Table of Contents Author Guidelines Submit a Manuscript
Advances in Decision Sciences
Volume 2012, Article ID 798286, 19 pages
Research Article

Key Performance Indicators for the Impact of Cognitive Assembly Planning on Ramp-Up Process

1Institute of Information Management in Mechanical Engineering IMA, RWTH Aachen University, Dennewartstrasse 27, 52068 Aachen, Germany
2Institute for Management Cybernetics e.V.(IfU), Dennewartstrasse 27, 52068 Aachen, Germany

Received 2 March 2012; Accepted 29 May 2012

Academic Editor: George Chryssolouris

Copyright © 2012 Christian Buescher et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. P. Mayer, C. M. Schlick, D. Ewert et al., “Automation of robotic assembly processes on the basis of an architecture of human cognition,” Production Engineering, vol. 5, no. 4, pp. 423–431, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. A. Pufall, J. C. Fransoo, and A. G. kok, “What determines product ramp-up performance?: a review of characteristics based on a case study at Nokia mobile phones,” BETA Publicatie: Working Paper 228, Technische Universiteit Eindhoven, 2007. View at Google Scholar
  3. H. Winkler, M. Heins, and P. Nyhuis, “A controlling system based on cause-effect relationships for the ramp-up of production systems,” Production Engineering, vol. 1, no. 1, pp. 103–111, 2007. View at Google Scholar
  4. G. Schuh, W. Stölsle, and F. Straube, “Grundlagen des Anlaufmanagements: Entwicklungen und Trends, Definitionen und Begriffe, Integriertes Anlaufmanagementmodell,” in Anlaufmanagement in der Automobilindustrie erfolgreich umsetzen, G. Schuh, Ed., pp. 1–6, Springer, Berlin, Germany, 2008. View at Google Scholar
  5. P. D. Ball, S. Roberts, A. Natalicchio, and C. Scorsafave, “Modelling production ramp-up of engineering products,” Proceedings of the Institution of Mechanical Engineers B, vol. 225, no. 6, pp. 959–971, 2011. View at Google Scholar
  6. R. Bischoff, Anlaufmanagement—Schnittstelle zwischen Projekt und Serie, vol. 2, Konstanser Managementschriften, 2007.
  7. D. Fitzek, Anlaufmanagement in Netzwerken : Grundlagen, Erfolgsfaktoren und Gestaltungsempfehlungen für die Automobilindustrie, Haupt, Bern, switzerland, 2006.
  8. K. Moeller, “Anlaufkosten in der Serienfertigung—Management und Controlling im Rahmen eines Lebenszyklus,” in Synchronisation von Produktentwicklung und Produktionsprozess: Produktreife—Produktneuanläufe Produktionsauslauf, H. Wildemann, Ed., TCW, 2005. View at Google Scholar
  9. J. Risse, Time-to-Market-Management in der Automobilindustrie: ein Gestaltungsrahmen für ein logistikorientiertes Anlaufmanagement, Haupt, Bern, Switzerland, 2003.
  10. R. Schmitt and P. Beaujean, “Selbstoptimierende Produktionssysteme,” Zeitschrift für wirtschaftliche Fabrikation, vol. 102, no. 9, pp. 520–524, 2007. View at Google Scholar
  11. E. Hauck, Ein kognitives Interaktionssystem zur Ansteuerung einer Montagezelle, vol. 812 of VDI Reihe 10, VDI, Düsseldorf, Germany, 2011.
  12. F. Klocke, “Production technology in high-wage countries—from ideas of today to products of tomorrow,” Industrial Engineering and Ergonomics, vol. 1, pp. 13–30, 2009. View at Google Scholar
  13. C. Brecher, F. Klocke, R. Schmitt, and G. Schuh, Excellence in Production, Apprimus, Aachen, Germany, 2007.
  14. D. Ewert, S. Thelen, R. Kunze, M. Mayer, D. Schilberg, and S. Jeschke, “A graph based hybrid approach of offline pre-planning and online re-planning for efficient assembly under realtime constraints,” in Proceedings of the International Conference on Intelligent Robotics and Applications (ICIRA '10), H. Liu, H. Ding, Z. Xiong, and X. Zhu, Eds., vol. 6425 of Part II, Lecture Notes in Computer Science, pp. 44–55, Springer, Shanghai, China, October 2010.
  15. E. Hauck, A. Gramatke, and K. Henning, “A software architecture for cognitive technical systems suitable for an assembly task in a production environment,” in Automation Control—Theory and Practice, pp. 13–28, InTech, 2009. View at Google Scholar
  16. C. Buescher, M. Mayer, D. Schilberg, and S. Jeschke, “Artificial cognition in autonomous assembly planning systems,” in Proceedings of the 4th International Conference Intelligent Robotics and Applications (ICIRA '11), J. Sabina, L. Honghai, and S. Daniel, Eds., vol. 7102 of Proceedings, Part II. Lecture Notes in Computer Science, pp. 168–178, Springer, Aachen, Germany, December 2011.
  17. T. Kempf, W. Herfs, and C. Brecher, “SOAR-based sequence control for a flexible assembly cell,” in Proceedings of the IEEE Conference on Emerging Technologies and Factory Automation (ETFA '09), pp. 488–496, IEEE Press, September 2009. View at Scopus
  18. M. A. Louly, A. Dolgui, and F. Hnaien, “Supply planning for single-level assembly system with stochastic component delivery times and service-level constraint,” International Journal of Production Economics, vol. 115, no. 1, pp. 236–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. S. Chauhan, A. Dolgui, and J. M. Proth, “A continuous model for supply planning of assembly systems with stochastic component procurement times,” International Journal of Production Economics, vol. 120, no. 2, pp. 411–417, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Hoffmann, “FF: the fast-forward planning system,” The AI Magazine, vol. 22, no. 3, pp. 57–62, 2001. View at Google Scholar · View at Scopus
  21. C. Castellini, E. Giunchiglia, A. Tacchella, and O. Tacchella, “Improvements to satbased conformant planning,” in Proceedings of the 6th European Conference on Planning (ECP '01), 2001.
  22. J. Hoffmann and R. Brafman, “Contingent planning via heuristic forward search with implicit belief states,” in Proceedings of the 15th International Conference on Automated Planning and Scheduling (ICAPS '05), pp. 71–80, 2005.
  23. S. G. Kaufman, R. H. Wilson, and Calton, “Automated planning and programming of assembly of fully 3d mechanisms,” Tech. Rep. SAND96-0433, Sandia National Laboratories, 1996. View at Google Scholar
  24. U. Thomas, Automatisierte Programmierung von Robotern für Montageaufgaben, Fortschritte in der Robotik 13, Shaker, Aachen, Germany, 2008.
  25. M. F. Zaeh and M. Wiesbeck, “A model for adaptively generating assembly instructions using state-based graph,” in Manufacturing Systems and Technologies for the New Frontier, pp. 195–198, Springer, Berlin, Germany, 2008. View at Google Scholar
  26. M. Mayer, B. Odenthal, M. Faber, W. Kabuss, B. Kausch, and C. Schlick, “Simulation of human cognition in self-optimizing assembly systems,” in Proceedings of the 17th World Congress on Ergonomics (IEA '09), 2009.
  27. L. S. Homem de Mello and A. C. Sanderson, “Representations of mechanical assembly sequences,” IEEE Transactions on Robotics and Automation, vol. 7, no. 2, pp. 211–227, 1991. View at Publisher · View at Google Scholar · View at Scopus
  28. R. S. Chen, K. Y. Lu, and P. H. Tai, “Optimizing assembly planning through a three-stage integrated approach,” International Journal of Production Economics, vol. 88, no. 3, pp. 243–256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 2007. View at Google Scholar
  30. P. Langley, J. E. Laird, and S. Rogers, “Cognitive architectures: research issues and challenges,” Cognitive Systems Research, vol. 10, no. 2, pp. 141–160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Schilberg, Architektur eines Datenintegrators zur durchgängigen Kopplung von verteilten numerischen Simulationen [Dissertation], RWTH Aachen, Aachen, Germany, 2010.
  32. A. E. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos, “Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners,” Artificial Intelligence, vol. 173, no. 5-6, pp. 619–668, 2009. View at Publisher · View at Google Scholar · View at Scopus