Table of Contents
Advances in Ecology
Volume 2014, Article ID 519297, 8 pages
http://dx.doi.org/10.1155/2014/519297
Research Article

Saltcedar (Tamarix ramosissima) Invasion Alters Decomposer Fauna and Plant Litter Decomposition in a Temperate Xerophytic Deciduous Forest

1Departamento de Geología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km. 601, X5804 BYA Río Cuarto, Córdoba, Argentina
2Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina
3Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km. 601, X5804 BYA Río Cuarto, Córdoba, Argentina

Received 23 June 2014; Accepted 8 August 2014; Published 21 August 2014

Academic Editor: Alistair Bishop

Copyright © 2014 José Camilo Bedano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Zavaleta, “The economic value of controlling an invasive shrub,” Ambio, vol. 29, no. 8, pp. 462–467, 2000. View at Google Scholar · View at Scopus
  2. T. A. Kennedy and S. E. Hobbie, “Saltcedar (Tamarix ramosissima) invasion alters organic matter dynamics in a desert stream,” Freshwater Biology, vol. 49, no. 1, pp. 65–76, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Natale, Evaluación del Riesgo de invasión por Tamariscos en ambientes naturales y seminaturales de la República Argentina [Ph.D. thesis], Universidad Nacional de Río Cuarto, Río Cuarto, Argentina, 2010.
  4. E. P. Glenn and P. L. Nagler, “Comparative ecophysiology of Tamarix ramosissima and native trees in western U.S. riparian zones,” Journal of Arid Environments, vol. 61, no. 3, pp. 419–446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Lovich, “A brief overview of the impact of tamarisk infestation on native plants and animals,” in Proceedings of the Saltcedar Management Workshop, J. DiTomaso and C. E. Bell, Eds., pp. 13–15, University of California Cooperative Extension, Hollister, Calif, USA, 1996.
  6. C. G. Ladenburger, A. L. Hild, D. J. Kazmer, and L. C. Munn, “Soil salinity patterns in Tamarix invasions in the Bighorn Basin, Wyoming, USA,” Journal of Arid Environments, vol. 65, no. 1, pp. 111–128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. C. J. De Loach, R. L. Carruthers, J. E. Lovich, T. L. Dudley, and S. D. Smith, “Ecological interactions in the biological control of salt cedar (Tamarix spp.) in the United States: towards a new understanding,” in Proceedings of the 10th International Symposium on Biological Control on Weeds, pp. 819–873, Montana State University Press, Bozeman, Mont, USA, 2000.
  8. J. C. Stromberg, M. K. Chew, P. L. Nagler, and E. P. Glenn, “Changing perceptions of change: the role of scientists in tamarix and river management,” Restoration Ecology, vol. 17, no. 2, pp. 177–186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Pritekel, A. Whittemore-Olson, N. Snow, and J. C. Moore, “Impacts from invasive plant species and their control on the plant community and belowground ecosystem at Rocky Mountain National Park, USA,” Applied Soil Ecology, vol. 32, no. 1, pp. 132–141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. C. Moore, E. L. Berlow, D. C. Coleman et al., “Detritus, trophic dynamics and biodiversity,” Ecology Letters, vol. 7, no. 7, pp. 584–600, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. R. J. Standish, “Impact of an invasive clonal herb on epigaeic invertebrates in forest remnants in New Zealand,” Biological Conservation, vol. 116, no. 1, pp. 49–58, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. G. Ehrenfeld and N. Scott, “Invasive species and the soil: effects on organisms and ecosystem processes,” Ecological Applications, vol. 11, no. 5, pp. 1259–1260, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Belnap, S. L. Phillips, S. K. Sherrod, and A. Moldenke, “Soil biota can change after exotic plant invasion: does this affect ecosystem processes?” Ecology, vol. 86, no. 11, pp. 3007–3017, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. B. E. Wolfe and J. N. Klironomos, “Breaking new ground: soil communities and exotic plant invasion,” BioScience, vol. 55, no. 6, pp. 477–487, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Keith, R. van der Wal, R. W. Brooker, G. H. R. Osler, S. J. Chapman, and D. F. R. P. Burslem, “Birch invasion of heather moorland increases nematode diversity and trophic complexity,” Soil Biology and Biochemistry, vol. 38, no. 12, pp. 3421–3430, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. G. Ehrenfeld, P. Kourtev, and W. Huang, “Changes in soil functions following invasions of exotic understory plants in deciduous forests,” Ecological Applications, vol. 11, no. 5, pp. 1287–1300, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. I. W. Ashton, L. A. Hyatt, K. M. Howe, J. Gurevitch, and M. T. Lerdau, “Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest,” Ecological Applications, vol. 15, no. 4, pp. 1263–1272, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. G. González and T. R. Seastedt, “Soil fauna and plant litter decomposition in tropical and subalpine forests,” Ecology, vol. 82, no. 4, pp. 955–964, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Aerts, “Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship,” Oikos, vol. 79, no. 3, pp. 439–449, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Lavelle, E. Blanchart, A. Martin et al., “A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics,” Biotropica, vol. 25, no. 2, pp. 130–150, 1993. View at Google Scholar · View at Scopus
  21. M. J. Swift, O. W. Heal, and J. M. Anderson, Decomposition in Terrestrial Ecosystems, vol. 5 of Studies in Ecology, Blackwell, Oxford, UK, 1979.
  22. B. R. Taylor, D. Parkinson, and W. F. J. Parsons, “Nitrogen and lignin content as predictors of litter decay rates: a microcosm test,” Ecology, vol. 70, no. 1, pp. 97–104, 1989. View at Publisher · View at Google Scholar · View at Scopus
  23. J. M. Melillo, J. D. Aber, and J. F. Muratore, “Nitrogen and lignin control of hardwood leaf litter decomposition dynamics.,” Ecology, vol. 63, no. 3, pp. 621–626, 1982. View at Publisher · View at Google Scholar · View at Scopus
  24. C. E. Prescott, “Do rates of litter decomposition tell us anything we really need to know?” Forest Ecology and Management, vol. 220, no. 1–3, pp. 66–74, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Barajas-Guzmán and J. Alvarez-Sánchez, “The relationships between litter fauna and rates of litter decomposition in a tropical rain forest,” Applied Soil Ecology, vol. 24, no. 1, pp. 91–100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. D. H. Wall and J. C. Moore, “Interactions underground: soil biodiversity, mutualism, and ecosystem processes,” BioScience, vol. 49, no. 2, pp. 109–117, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. R. A. Hansen, “Red oak litter promotes a microarthropod functional group that accelerates its decomposition,” Plant and Soil, vol. 209, no. 1, pp. 37–45, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. J. J. Cantero, “Los humedales del centro sur de Córdoba. Parte B. Comunidades vegetales y aspectos fitosociológicos relacionados,” in Aguas Superficiales y Subterráneas en el sur de Córdoba: una perspectiva geoambiental, M. Blarasin, S. Degiovanni, A. Cabrera, and M. Villegas, Eds., pp. 283–294, UniRío, Río Cuarto, Argentina, 2005. View at Google Scholar
  29. Soil Survey Staff, Keys to Soil Taxonomy, USDA-Natural Resources Conservation Service, Washington, DC, USA, 11th edition, 2010.
  30. DACyTSEM, Los Suelos. Nivel de Reconocimiento 1:500.000, Agencia Córdoba e INTA Manfredi, Córdoba, Argentina, 2003.
  31. Servicio de Agrometeorología UNRC, “Facultad de Agronomφa y Veterinaria,” Universidad Nacional de Río Cuarto, Argentina, 2010.
  32. L. Sacchi, Impacto de los bosques de tamarisco (Tamarix ramosissima) sobre el sistema suelo en el sur de la provincia de Córdoba [Ph.D. thesis], Universidad Nacional de Río Cuarto, Río Cuarto, Argentina, 2009.
  33. L. Calle, Resumen de Historia de Río Cuarto, Puma, Río Cuarto, Argentina, 1977.
  34. D. A. Marini, Bases para la restauración de sitios afectados por tamarisco (Tamarix ramosissima) en el sur de la provincia de Córdoba [Ph.D. thesis], Universidad Nacional de Río Cuarto, Río Cuarto, Argentina, 2009.
  35. D. Coleman, D. A. Crossley Jr., and P. F. Hendrix, Fundamentals of Soil Ecology, Elsevier Academic Press, California, Calif, USA, 2nd edition, 2004.
  36. A. Domínguez, J. C. Bedano, and A. R. Becker, “Negative effects of no-till on soil macrofauna and litter decomposition in Argentina as compared with natural grasslands,” Soil and Tillage Research, vol. 110, no. 1, pp. 51–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. J. M. F. Johnson, N. W. Barbour, and S. L. Weyers, “Chemical composition of crop biomass impacts its decomposition,” Soil Science Society of America Journal, vol. 71, no. 1, pp. 155–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. C. Bedano, M. P. Cantú, and M. E. Doucet, “Influence of three different land management practices on soil mite (Arachnida: Acari) densities in relation to a natural soil,” Applied Soil Ecology, vol. 32, no. 3, pp. 293–304, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Scheu, D. Albers, J. Alphei et al., “The soil fauna community in pure and mixed stands of beech and spruce of different age: trophic structure and structuring forces,” Oikos, vol. 101, no. 2, pp. 225–238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Scheu and M. Falca, “The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community,” Oecologia, vol. 123, no. 2, pp. 285–296, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. D. A. Johansen, Plant Microtechnique VI-VII, McGraw-Hill, New York, NY, USA, 1940.
  42. J. A. di Rienzo, A. W. Guzmán, and F. Casanoves, “A multiple-comparisons method based on the distribution of the root node distance of a binary tree,” Journal of Agricultural, Biological, and Environmental Statistics, vol. 7, no. 2, pp. 129–142, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. M. M. Rahman and Z. Govindarajulu, “A modification of the test of Shapiro and Wilk for normality,” Journal of Applied Statistics, vol. 24, no. 2, pp. 219–235, 1997. View at Publisher · View at Google Scholar · View at Scopus
  44. J. A. di Rienzo, F. Casanoves, M. G. Balzarini, L. González, M. Tablada, and C. W. Robledo, “InfoStat versión 2012. Grupo InfoStat,” FCA, Universidad Nacional de Córdoba, Argentina, 2012.
  45. S. Gillet and J. Ponge, “Changes in species assemblages and diets of Collembola along a gradient of metal pollution,” Applied Soil Ecology, vol. 22, no. 2, pp. 127–138, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. T. C. Robson, A. C. Baker, and B. R. Murray, “Differences in leaf-litter invertebrate assemblages between radiata pine plantations and neighbouring native eucalypt woodland,” Austral Ecology, vol. 34, no. 4, pp. 368–376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. J. P. Grime, Plant Strategies and Vegetation Processes, Wiley, New York, NY, USA, 1979.
  48. M. Huston, “A general hypothesis of species diversity,” The American Naturalist, vol. 113, no. 1, pp. 81–101, 1979. View at Publisher · View at Google Scholar · View at MathSciNet
  49. J. Belnap and S. L. Phillips, “Soil biota in an ungrazed grassland: response to annual grass (Bromus tectorum) invasion,” Ecological Applications, vol. 11, no. 5, pp. 1261–1275, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Kaneko and E. F. Salamanca, “Mixed leaf litter effects on decomposition rates and soil microarthropod communities in an oak-pine stand in Japan,” Ecological Research, vol. 14, no. 2, pp. 131–138, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. D. A. Wardle, Communities and Ecosystems: Linking the Aboveground and Belowground Components, Princeton University Press, Princeton, NJ, USA, 2002.
  52. T. M. Tibbets and M. C. Molles Jr., “C:N:P stoichiometry of dominant riparian trees and arthropods along the Middle Rio Grande,” Freshwater Biology, vol. 50, no. 11, pp. 1882–1894, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. C. R. Whitcraft, L. A. Levin, D. Talley, and J. A. Crooks, “Utilization of invasive tamarisk by salt marsh consumers,” Oecologia, vol. 158, no. 2, pp. 259–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. G. Loranger, J. Ponge, D. Imbert, and P. Lavelle, “Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality,” Biology and Fertility of Soils, vol. 35, no. 4, pp. 247–252, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. M. J. I. Briones and P. Ineson, “Decomposition of eucalyptus leaves in litter mixtures,” Soil Biology and Biochemistry, vol. 28, no. 10-11, pp. 1381–1388, 1996. View at Publisher · View at Google Scholar · View at Scopus
  56. S. D. Graves and A. M. Shapiro, “Exotics as host plants of the California butterfly fauna,” Biological Conservation, vol. 110, no. 3, pp. 413–433, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. R. J. Hobbs, E. Higgs, and J. A. Harris, “Novel ecosystems: implications for conservation and restoration,” Trends in Ecology and Evolution, vol. 24, no. 11, pp. 599–605, 2009. View at Publisher · View at Google Scholar · View at Scopus