Advances in Electrical Engineering The latest articles from Hindawi © 2017 , Hindawi Limited . All rights reserved. Comparative Analysis of Fuzzy Logic and PI Controller Based Electronic Load Controller for Self-Excited Induction Generator Sun, 06 Aug 2017 08:54:45 +0000 Rural areas suffer from limited grid connectivity. Small hydroplants can provide electricity at a cheap cost with low environmental impact in these regions. Self-excited induction generators are widely used in hydroplants since they operate on a standalone basis because of the connection of capacitor bank that provides reactive power at no load. However, SEIGs suffer from poor voltage and frequency regulation. Thus, an electronic load controller (ELC) is connected across SEIG to regulate voltage and frequency. Generally, the control scheme for an ELC circuit is based on the conventional proportional integral control, which is easy to implement and performs well under linear load conditions. However, PI controllers handle nonlinearity poorly. This paper presents a fuzzy logic control (FLC) based control scheme for ELC in a constant power generation system (SEIG). The control scheme is designed and simulated in MATLAB under both linear and nonlinear load conditions. A comparison of both the controllers is conducted which highlights the superiority of the fuzzy logic control scheme. Eshani Mishra and Sachin Tiwari Copyright © 2017 Eshani Mishra and Sachin Tiwari. All rights reserved. Novel Basic Block of Multilevel Inverter Using Reduced Number of On-State Switches and Cascaded Circuit Topology Tue, 18 Apr 2017 08:13:09 +0000 In this paper a basic block of novel topology of multilevel inverter is proposed. The proposed approach significantly requires reduced number of dc voltage sources and power switches to attain maximum number of output voltage levels. By connecting basic blocks in series a cascaded multilevel topology is developed. Each block itself is also a multilevel inverter. Analysis of proposed topology is carried out in symmetric as well as asymmetric operating modes. The topology is investigated through computer simulation using MATLAB/Simulink and validated experimentally on prototype in the laboratory. Aparna Prayag and Sanjay Bodkhe Copyright © 2017 Aparna Prayag and Sanjay Bodkhe. All rights reserved. Control Strategy for Power Loss Reduction considering Load Variation with Large Penetration of Distributed Generation Wed, 15 Feb 2017 00:00:00 +0000 With the increase of penetration of distribution in distribution systems, the problems of power loss increase and short-circuit capacity beyond the rated capacity of the circuit breaker will become more serious. In this paper, a methodology (modified BPSO) is presented for network reconfiguration which is based on the hybrid approach of Tabu search and BPSO algorithms to prevent the local convergence and to decrease the calculation time using double fitness to consider the constraints. Moreover, an average load simulated method (ALS method) considering load variation is proposed such that the average load value is used instead of the actual load for calculation. Finally, from a case study, the results of simulation certify that the approaches will decrease drastically the losses and improve the voltage profiles obviously; at the same time, the short-circuit capacity is also decreased into smaller shut-off capacity of the circuit breaker. The power losses will not be increased too much even if the short-circuit capacity constraint is considered; voltage profiles are better with the constraint of short-circuit capacity considered. The ALS method is simple and the calculation time is fast. Chang Liu, Xiangyu Lv, Li Guo, Lixia Cai, and Kuo Su Copyright © 2017 Chang Liu et al. All rights reserved. Mitigating Congestion in a Power System and Role of FACTS Devices Wed, 18 Jan 2017 07:47:12 +0000 Congestion management refers to avoiding or relieving congestion. In transmission lines, congestion management is one of the most important issues for the reliable operation of power system in the deregulated environment. Restructuring has brought considerable changes in all possible domains including electric supply industry. By virtue of restructuring, electricity has now become a commodity and has converted into a deregulated one. The traditional regulated power system has now become a competitive power market. In the present scenario, the real time transmission congestion is the operating condition in which the transfer capability to implement all the traded transactions simultaneously is not enough due to either some expected contingencies or market settlement. Thus, congestion is associated with one or more violations of the physical, operational, and policy constraints under which grids operate. Thus, congestion management is about managing the power transmission and distribution among valuable consumers priority-wise. Placement of FACTS (Flexible Alternating Current Transmission System) devices for generation rescheduling and load-shedding play a crucial role in congestion management. FACTS devices are used to enhance the maximum load ability of the transmission system. FACTS increases the flexibility of power system, makes it more controllable, and allows utilization of existing network closer to its thermal loading capacity without jeopardizing the stability. FACTS technology can boost the transfer capability in stability limited systems by 20–30%. As a result, more power can reach consumers with a shorter project implementation time and a lower investment cost. This review work unites the various publications on congestion management in past few decades. Madhvi Gupta, Vivek Kumar, Gopal Krishna Banerjee, and N. K. Sharma Copyright © 2017 Madhvi Gupta et al. All rights reserved. Current Conveyor Based Window Comparator Circuits Wed, 07 Dec 2016 11:17:58 +0000 This paper introduces a new window comparator circuit utilizing a new current conveyor and two diodes, operable at ±1.25 V and capable of accurately detecting the voltage windows. Another modified circuit with distinct binary levels suited for automatic control applications is also suggested. Exhaustive simulation results showing detection of windows, as small as 50 mV and as high as 1 V, are included. Comparisons are further drawn with the traditional operational amplifier based circuit and the new circuit is found to benefit from the use of current-mode active element, namely, Extra-X Current Controlled Current Conveyor. The proposed theory is well supported through simulation results. Sudhanshu Maheshwari Copyright © 2016 Sudhanshu Maheshwari. All rights reserved. Fuzzy Logic Controller Based Distributed Generation Integration Strategy for Stochastic Performance Improvement Tue, 29 Nov 2016 09:05:40 +0000 In the restructured environment, distributed generation (DG) is considered as a very promising option due to a high initial capital cost of conventional plants, environmental concerns, and power shortage. Apart from the above, distributed generation (DG) has also abilities to improve performance of feeder. Most of the distribution feeders have radial structure, which compel to observe the impact of distributed generations on feeder performance, having different characteristics and composition of time varying static ZIP load models. Two fuzzy-based expert system is proposed for selecting and ranking the most appropriated periods to an integration of distributed generations with a feeder. Madami type fuzzy logic controller was developed for sizing of distributed generation, whereas Sugeno type fuzzy logic controller was developed for the DG location. Input parameters for Madami fuzzy logic controller are substation reserve capacity, feeder power loss to load ratio, voltage unbalance, and apparent power imbalances. DG output, survivability index, and node distance from substation are chosen as input to Sugeno type fuzzy logic controller. The stochastic performance of proposed fuzzy expert systems was evaluated on a modified IEEE 37 node test feeder with 15 minutes characteristics time interval varying static ZIP load models. Jagdish Prasad Sharma and H. Ravishankar Kamath Copyright © 2016 Jagdish Prasad Sharma and H. Ravishankar Kamath. All rights reserved. Intelligent Fault Diagnosis in a Power Distribution Network Wed, 19 Oct 2016 07:45:03 +0000 This paper presents a novel method of fault diagnosis by the use of fuzzy logic and neural network-based techniques for electric power fault detection, classification, and location in a power distribution network. A real network was used as a case study. The ten different types of line faults including single line-to-ground, line-to-line, double line-to-ground, and three-phase faults were investigated. The designed system has 89% accuracy for fault type identification. It also has 93% accuracy for fault location. The results indicate that the proposed technique is effective in detecting, classifying, and locating low impedance faults. Oluleke O. Babayomi and Peter O. Oluseyi Copyright © 2016 Oluleke O. Babayomi and Peter O. Oluseyi. All rights reserved. CPW Fed Miniaturized UWB Tri-Notch Antenna with Bandwidth Enhancement Mon, 10 Oct 2016 09:35:49 +0000 A Coplanar Waveguide (CPW) fed miniaturized ultra-wideband (UWB) tri-notch antenna with bandwidth enhancement is proposed. The antenna is prototyped for ultra-wideband (UWB) communication applications with bandwidth enhancement. By implementing asymmetric structure, the miniaturization in the antenna has been achieved with a very compact size of 22 × 13 × 1.5 mm3 making it suitable for USB dongle applications. The antenna is first simulated with partial rectangular ground plane which shows that operating bandwidth ranges from 3.1 to 10.6 GHz. Then the antenna is measured and simulated by cutting the ground plane with specific geometry which shows that operating bandwidth now ranges from 3.1 to 20 GHz which provides a wide usable fractional bandwidth of more than 150%. The antenna is then modified for tri-notch applications in order to reject worldwide interoperability for microwave access (WiMAX) band (3.3–3.6 GHz) and wireless local area network (WLAN) frequency bands (lower WLAN (5.15–5.325) and upper WLAN (5.725–5.825) GHz). Triple Band rejection capability has been achieved by introducing three complementary split ring resonators (CSRR) in the radiating patch. MuhibUr Rahman Copyright © 2016 MuhibUr Rahman. All rights reserved. Assessment of Global Voltage Stability Margin through Radial Basis Function Neural Network Thu, 29 Sep 2016 06:05:24 +0000 Dynamic operating conditions along with contingencies often present formidable challenges to the power engineers. Decisions pertaining to the control strategies taken by the system operators at energy management centre are based on the information about the system’s behavior. The application of ANN as a tool for voltage stability assessment is empirical because of its ability to do parallel data processing with high accuracy, fast response, and capability to model dynamic, nonlinear, and noisy data. This paper presents an effective methodology based on Radial Basis Function Neural Network (RBFN) to predict Global Voltage Stability Margin (GVSM), for any unseen loading condition of the system. GVSM is used to assess the overall voltage stability status of the power system. A comparative analysis of different topologies of ANN, namely, Feedforward Backprop (FFBP), Cascade Forward Backprop (CFB), Generalized Regression (GR), Layer Recurrent (LR), Nonlinear Autoregressive Exogenous (NARX), ELMAN Backprop, and Feedforward Distributed Time Delay Network (FFDTDN), is carried out on the basis of capability of the prediction of GVSM. The efficacy of RBFN is better than other networks, which is validated by taking the predictions of GVSM at different levels of Additive White Gaussian Noise (AWGN) in input features. The results obtained from ANNs are validated through the offline Newton Raphson (N-R) method. The proposed methodology is tested over IEEE 14-bus, IEEE 30-bus, and IEEE 118-bus test systems. Akash Saxena and Ankit Kumar Sharma Copyright © 2016 Akash Saxena and Ankit Kumar Sharma. All rights reserved. Mutual Inductance and Magnetic Force Calculations for Bitter Disk Coil (Pancake) with Nonlinear Radial Current and Filamentary Circular Coil with Azimuthal Current Sun, 18 Sep 2016 13:02:43 +0000 Bitter coils are electromagnets used for the generation of extremely strong magnetic fields superior to 30 T. In this paper we calculate the mutual inductance and the magnetic force between Bitter disk (pancake) coil with the nonlinear radial current and the circular filamentary coil with the azimuthal current. The close form expressed over complete elliptic integrals of the first and second kind as well as Heuman’s Lambda function is obtained for this configuration either for the mutual inductance or for the magnetic force. The results of this method are compared with those obtained by the improved modified filament method for the presented configuration. All results are in an excellent agreement. Slobodan Babic and Cevdet Akyel Copyright © 2016 Slobodan Babic and Cevdet Akyel. All rights reserved. Comparison of 6 Diode and 6 Transistor Mixers Based on Analysis and Measurement Tue, 17 May 2016 11:53:37 +0000 Our goal is to overview semiconductor mixers designed for good large signal performance. Twelve different mixers were compared utilizing pn diodes, bipolar transistors, and/or junction field effect transistors. The main aspect of comparison is the third-order intercept point (IP3), and both circuit analysis and measurement results have been considered. IP3 has been analyzed by the program AWR (NI AWR Design Environment) and measured by two-tone test (Keysight Technologies). We provide three ways of improvement of large signal performance: application of a diplexer at the RF port, reduction of DC currents, and exploiting a region of RF input power with infinite IP3. In addition to that, our contributions are several modifications of existing mixers and a new mixer circuit (as illustrated in the figures). It is widely believed that the slope of the third-order intermodulation product versus input power is always greater than that of the first-order product. However, measurement and analysis revealed (as illustrated in the figures) that the two lines may be parallel over a broad range of input power, thus resulting in infinite IP3. Mixer knowledge may be useful for a wide range of readers because almost every radio contains at least one mixer. J. Ladvánszky and K. M. Osbáth Copyright © 2016 J. Ladvánszky and K. M. Osbáth. All rights reserved. A Photoplethysmography Melanin Evaluation System by Modified Boltzmann Transport Equation (BTE) Mon, 22 Jun 2015 08:08:06 +0000 With the advance in cosmetic medical technology in recent years, more and more people get cosmetic medical treatments, especially skin whitening treatments. Nevertheless, people usually assess the effect of skin whitening products by vision, which is subjective and will be different from each person. To acquire the value of melanin concentration objectively, people need to go to cosmetic medical clinics. This will cause inconvenience to people. This paper develops a novel evaluation platform based on optical assessment methods, which employ different absorption and scattering properties to different wavelengths of light in human tissue to obtain melanin concentration. Moreover, this paper proposes a new method that compensates the interaction between epidermis and dermis to acquire the melanin concentration more accurately. The novel platform designed in this paper is smaller and consumes lower-power and smaller when comparing to other conventional devices in market. Sheng-Chieh Huang, Hui-Min Wang, and Shi-Han Luo Copyright © 2015 Sheng-Chieh Huang et al. All rights reserved. Effect of DC Link Control Strategies on Multiterminal AC-DC Power Flow Sun, 19 Apr 2015 13:21:47 +0000 For power-flow solution of power systems incorporating multiterminal DC (MTDC) network(s), five quantities are required to be solved per converter. On the other hand, only three independent equations comprising two basic converter equations and one DC network equation exist per converter. Thus, for solution, two additional equations are required. These two equations are derived from the control specifications adopted for the DC links. Depending on the application, several combinations of valid control specifications are possible. Each combination of a set of valid control specifications is known as a control strategy. The number of control strategies increases with an increase in the number of the DC terminals or converters. It is observed that the power-flow convergence of integrated AC-MTDC power systems is strongly affected by the control strategy adopted for the DC links. This work investigates the mechanism by which different control strategies affect the power-flow convergence pattern of AC-MTDC power systems. To solve the DC variables in the Newton-Raphson (NR) power-flow model, sequential method is considered in this paper. Numerous case studies carried out on a three-terminal DC network incorporated in the IEEE-300 bus test system validate this. Shagufta Khan and Suman Bhowmick Copyright © 2015 Shagufta Khan and Suman Bhowmick. All rights reserved. Multiobjective Economic Load Dispatch Problem Solved by New PSO Thu, 19 Feb 2015 08:43:27 +0000 Proposed in this paper is a new particle swarm optimization technique for the solution of economic load dispatch as well as environmental emission of the thermal power plant with power balance and generation limit constraints. Economic load dispatch is an online problem to minimize the total generating cost of the thermal power plant and satisfy the equality and inequality constraints. Thermal power plants use fossil fuels for the generation of power; fossil fuel emits many toxic gases which pollute the environment. This paper not only considers the economic load dispatch problem to reduce the total generation cost of the thermal power plant but also deals with environmental emission minimization. In this paper, fuel cost and the environmental emission functions are considered and formulated as a multiobjective economic load dispatch problem. For obtaining the solution of multiobjective economic load dispatch problem a new PSO called moderate random search PSO was used. MRPSO enhances the ability of particles to explore in the search spaces more effectively and increases their convergence rates. The proposed algorithm is tested for the IEEE 30 bus test systems. The results obtained by MRPSO algorithm show that it is effective and efficient. Nagendra Singh and Yogendra Kumar Copyright © 2015 Nagendra Singh and Yogendra Kumar. All rights reserved. Development of Power Electronics Based Test Platform for Characterization and Testing of Magnetocaloric Materials Sat, 31 Jan 2015 12:35:37 +0000 Magnetocaloric effects of various materials are getting more and more interesting for the future, as they can significantly contribute towards improving the efficiency of many energy intensive applications such as refrigeration, heating, and air conditioning. Accurate characterization of magnetocaloric effects, exhibited by various materials, is an important process for further studies and development of the suitable magnetocaloric heating and cooling solutions. The conventional test facilities have plenty of limitations, as they focus only on the thermodynamic side and use magnetic machines with moving bed of magnetocaloric material or magnet. In this work an entirely new approach for characterization of the magnetocaloric materials is presented, with the main focus on a flexible and efficient power electronic based excitation and a completely static test platform. It can generate a periodically varying magnetic field using superposition of an ac and a dc magnetic field. The scale down prototype uses a customized single phase H-bridge inverter with essential protections and an electromagnet load as actuator. The preliminary simulation and experimental results show good agreement and support the usage of the power electronic test platform for characterizing magnetocaloric materials. Deepak Elamalayil Soman, Jelena Loncarski, Lisa Gerdin, Petter Eklund, Sandra Eriksson, and Mats Leijon Copyright © 2015 Deepak Elamalayil Soman et al. All rights reserved. I/Q Imbalance Problem in SC-FDMA System with DCT and DFT Basis Functions Thu, 29 Jan 2015 08:01:32 +0000 In-phase/quadrature-phase (I/Q) imbalance is one of the most serious concerns in the practical implementation of the direct conversion receiver architecture. This paper investigates and analyzes the impacts of the I/Q imbalance on the performance of the single-carrier frequency-division multiple access (SC-FDMA) system with different basis functions by computer simulations only. The suitable phase and amplitude of I and Q branches that can be utilized in SC-FDMA system are studied and determined through simulations for different I/Q imbalance scenarios and different subcarrier mapping schemes. Simulation results show that the phase and amplitude of I and Q branches have significant effects on the bit error rate (BER) performance of the SC-FDMA system. F. S. Al-kamali, Hefdhallah Sakran, and N. A. Odhah Copyright © 2015 F. S. Al-kamali et al. All rights reserved. Characterization and Modeling of Received Signal Strength and Charging Time for Wireless Energy Transfer Tue, 20 Jan 2015 08:05:58 +0000 Wireless sensor networks can provide effective means for monitoring and controlling a wide range of applications. Recently, tremendous effort was directed towards devising sensors powered from ambient sources such as heat, wind, and vibration. Wireless energy transfer is another source that has attractive features that make it a promising candidate for supplying power to wireless sensor nodes. This paper is concerned with characterizing and modeling the charging time and received signal strength indicator for wireless energy transfer system. These parameters play a vital role in deciding the geometry of sensor network and the routing protocols to be deployed. The development of communication protocols for wireless-powered wireless sensor networks is also improved with the knowledge of such models. These two quantities were computed from data acquired at various coordinates of the harvester relative to a fixed position of RF energy source. Data was acquired for indoor and outdoor scenarios using the commercially available PowerCast energy harvester and evaluation board. Mathematical models for both indoor and outdoor environments were developed and analyzed. A few guidelines on how to use these models were suggested. Finally, the possibility of harvesting the energy from the ambient RF power to energize wireless sensor nodes was also investigated. Uthman Baroudi, Amin-ud-din Qureshi, and Samir Mekid Copyright © 2015 Uthman Baroudi et al. All rights reserved. A Cancellation-Free Symbolic Sensitivity Technique Based on Network Determinant Expansion Sun, 18 Jan 2015 12:57:01 +0000 The generalization of Bode’s sensitivity analysis technique for all types of the transfer functions and circuit elements is presented in the paper. The proposed formulae for first- and second-order symbolic sensitivity calculation provide the compact size of obtained expression and have the advantages of cancellation-free sum-of-product terms and matrix-free computation. This is achieved by means of the concept of high order summative cofactors and the generalized parameter extraction method. The proposed technique is implemented in symbolic circuit analysis program Cirsym. Illustrative example on symbolic sensitivity circuit analysis and comparison of the presented technique with the transimpedance method and the method based on the modified Coates flow-graph are given. Vladimir Filaretov, Konstantin Gorshkov, and Sergey Kurganov Copyright © 2015 Vladimir Filaretov et al. All rights reserved. Filter Bank Multicarrier Modulation: A Waveform Candidate for 5G and Beyond Sun, 21 Dec 2014 00:10:11 +0000 Recent discussions on viable technologies for 5G emphasize on the need for waveforms with better spectral containment per subcarrier than the celebrated orthogonal frequency division multiplexing (OFDM). Filter bank multicarrier (FBMC) is an alternative technology that can serve this need. Subcarrier waveforms are built based on a prototype filter that is designed with this emphasis in mind. This paper presents a broad review of the research work done in the wireless laboratory of the University of Utah in the past 15 years. It also relates this research to the works done by other researchers. The theoretical basis based on which FBMC waveforms are constructed is discussed. Also, various methods of designing effective prototype filters are presented. For completeness, polyphase structures that are used for computationally efficient implementation of FBMC systems are introduced and their complexity is contrasted with that of OFDM. The problems of channel equalization as well as synchronization and tracking methods in FBMC systems are given a special consideration and a few outstanding research problems are identified. Moreover, this paper brings up a number of appealing features of FBMC waveforms that make them an ideal choice in the emerging areas of multiuser and massive MIMO networks. Behrouz Farhang-Boroujeny Copyright © 2014 Behrouz Farhang-Boroujeny. All rights reserved. Caching Eliminates the Wireless Bottleneck in Video Aware Wireless Networks Sun, 30 Nov 2014 11:38:20 +0000 Wireless video is the main driver for rapid growth in cellular data traffic. Traditional methods for network capacity increase are very costly and do not exploit the unique features of video, especially asynchronous content reuse. In this paper we give an overview of our work that proposed and detailed a new transmission paradigm exploiting content reuse and the widespread availability of low-cost storage. Our network structure uses caching in helper stations (femtocaching) and/or devices, combined with highly spectrally efficient short-range communications to deliver video files. For femtocaching, we develop optimum storage schemes and dynamic streaming policies that optimize video quality. For caching on devices, combined with device-to-device (D2D) communications, we show that communications within clusters of mobile stations should be used; the cluster size can be adjusted to optimize the tradeoff between frequency reuse and the probability that a device finds a desired file cached by another device in the same cluster. In many situations the network throughput increases linearly with the number of users, and the tradeoff between throughput and outage is better than in traditional base-station centric systems. Simulation results with realistic numbers of users and channel conditions show that network throughput can be increased by two orders of magnitude compared to conventional schemes. Andreas F. Molisch, Giuseppe Caire, David Ott, Jeffrey R. Foerster, Dilip Bethanabhotla, and Mingyue Ji Copyright © 2014 Andreas F. Molisch et al. All rights reserved. Performance of Various Metaheuristic Techniques for Economic Dispatch Problem with Valve Point Loading Effects and Multiple Fueling Options Thu, 27 Nov 2014 13:25:11 +0000 The paper presents the metaheuristic approaches based on pattern search and simulated annealing hybridized with sequential quadratic programming, a powerful nonlinear adaptive technique for estimation of the finest combination of generated power in a given system at lowest operating cost while sustaining the operating condition of system efficiently. The fuel cost is minimized by satisfying the nonlinear operating conditions of thermal units mainly based on generation capacity constraints, generator ramp limit, power balance constraints, and valve point loading effect and by keeping in view the prohibited operating zones, respectively. About the optimization, a comparative study is made for pattern search (PS) and simulated annealing (SA), as a viable global search technique and sequential quadratic programming, an efficient local optimizer and their hybrid versions. The applicability, stability, and reliability of the designed approaches are validated through comprehensive statistical analysis based on Monte Carlo simulations. Ijaz Ahmed, Ali Rauf Rao, Alaf Shah, Engr Alamzeb, and Junaid Ali Khan Copyright © 2014 Ijaz Ahmed et al. All rights reserved. Active Fault Tolerant Control Based on Bond Graph Approach Mon, 10 Nov 2014 00:00:00 +0000 This paper proposes a structural fault recoverability analysis using the bond graph (BG) approach. Indeed, this tool enables structural analysis for diagnosis and fault tolerant control (FTC). For the FTC, we propose an approach based on the inverse control using the inverse BG. The fault tolerant control method is also compared with another approach. Finally, simulation results are presented to show the performance of the proposed approach. Manel Allous and Nadia Zanzouri Copyright © 2014 Manel Allous and Nadia Zanzouri. All rights reserved. Proton Irradiations on SJ HV Power MOSFETs to Realize Fast Diode Devices Mon, 03 Nov 2014 10:21:42 +0000 This paper studies the effects of proton irradiations on Super Junction High Voltage power MOSFETs to realize transistors with fast diode. Experiments were performed on a sample of 600 V power MOSFETs and achieved results were compared to standard irradiated devices by electrons. Ignazio Bertuglia, Giuseppe Consentino, and Michele Laudani Copyright © 2014 Ignazio Bertuglia et al. All rights reserved. Nonconvex Economic Dispatch Using Particle Swarm Optimization with Time Varying Operators Sun, 12 Oct 2014 07:15:45 +0000 This paper presents a particle swarm optimization (PSO) to solve hard combinatorial constrained optimization problems such as nonconvex and discontinuous economic dispatch (ED) problem of large thermal power plants. Several measures have been suggested in the control equation of the classical PSO by modifying its operators for better exploration and exploitation. The inertia operator of the PSO is modulated by introducing a new truncated sinusoidal function. The cognitive and social behaviors are dynamically controlled by suggesting new exponential constriction functions. The overall methodology effectively regulates the velocity of particles during their flight and results in substantial improvement in the classical PSO. The effectiveness of the proposed method has been tested for economic load dispatch of three standard test systems considering various operational constraints like valve-point loading effect, prohibited operating zones (POZs), network power loss, and so forth. The application results show that the proposed PSO method is very promising. Vinay Kumar Jadoun, Nikhil Gupta, K. R. Niazi, and Anil Swarnkar Copyright © 2014 Vinay Kumar Jadoun et al. All rights reserved. Peak Voltage Measurements Using Standard Sphere Gap Method Wed, 08 Oct 2014 13:00:28 +0000 The paper presents a measurement system of peak value of high voltage (H.V.) using 150 mm diameter sphere gap, disposed in vertical position. Experimental breakdown results have been compared with standard values at atmospheric reference conditions STC (20°C, 101.3 kPa, or 760 mmHg). The main experimental and theoretical characteristics are presented. Constantin Ungureanu and Lăcrămioara Mihaela Nemțoi Copyright © 2014 Constantin Ungureanu and Lăcrămioara Mihaela Nemțoi. All rights reserved. QPSO versus BSA for Failure Correction of Linear Array of Mutually Coupled Parallel Dipole Antennas with Fixed Side Lobe Level and VSWR Sun, 28 Sep 2014 11:19:41 +0000 Evolutionary algorithms play an important role in synthesizing linear array antenna. In this paper, the authors have compared quantum particle swarm optimization (QPSO) and backtracking search algorithms (BSA) in failure correction of linear antenna arrays constructed using half wavelength uniformly spaced dipoles. The QPSO algorithm is a combination of classical PSO and quantum mechanics principles to enhance the performance of PSO and BSA is considered as a modernized PSO using historical populations. These two algorithms are applied to obtain the voltage excitations of the nondefective elements in the failed antenna array such that the necessary objectives, namely, the minimization of parameters like side lobe level (SLL) and voltage standing wave ratio (VSWR), are achieved leading to their values matching closely the desired parameter values. The results of both algorithms are compared in terms of parameters used in the objective function along their statistical parameters. Moreover, in order to reduce the processing time, inverse fast Fourier transform (IFFT) is used to obtain the array factor. In this paper, an example is presented for the application of the above two algorithms for a linear array of 30 parallel half wavelength dipole antennas failed with 4 elements and they clearly show the effectiveness of both the QPSO and BSA algorithms in terms of optimized parameters, statistical values, and processing time. R. Muralidharan, Vallavaraj Athinarayanan, G. K. Mahanti, and Ananya Mahanti Copyright © 2014 R. Muralidharan et al. All rights reserved. Parameter Estimation of Turbo Code Encoder Thu, 18 Sep 2014 09:10:16 +0000 The problem of reconstruction of a channel code consists of finding out its design parameters solely based on its output. This paper investigates the problem of reconstruction of parallel turbo codes. Reconstruction of a turbo code has been addressed in the literature assuming that some of the parameters of the turbo encoder, such as the number of input and output bits of the constituent encoders and puncturing pattern, are known. However in practical noncooperative situations, these parameters are unknown and should be estimated before applying reconstruction process. Considering such practical situations, this paper proposes a novel method to estimate the above-mentioned code parameters. The proposed algorithm increases the efficiency of the reconstruction process significantly by judiciously reducing the size of search space based on an analysis of the observed channel code output. Moreover, simulation results show that the proposed algorithm is highly robust against channel errors when it is fed with noisy observations. Mehdi Teimouri and Ahmadreza Hedayat Copyright © 2014 Mehdi Teimouri and Ahmadreza Hedayat. All rights reserved. Musical Rhythms Affect Heart Rate Variability: Algorithm and Models Wed, 17 Sep 2014 00:00:00 +0000 There were a lot of psychological music experiments and models but there were few psychological rhythm experiments and models. There were a lot of physiological music experiments but there were few physiological music models. There were few physiological rhythm experiments but there was no physiological rhythm model. We proposed a physiological rhythm model to fill this gap. Twenty-two participants, 4 drum loops as stimuli, and electrocardiogram (ECG) were employed in this work. We designed an algorithm to map tempo, complexity, and energy into two heart rate variability (HRV) measures, the standard deviation of normal-to-normal heartbeats (SDNN) and the ratio of low- and high-frequency powers (LF/HF); these two measures form the physiological valence/arousal plane. There were four major findings. Initially, simple and loud rhythms enhanced arousal. Secondly, the removal of fast and loud rhythms decreased arousal. Thirdly, fast rhythms increased valence. Finally, the removal of fast and quiet rhythms increased valence. Our work extended the psychological model to the physiological model and deepened the musical model into the rhythmic model. Moreover, this model could be the rules of automatic music generating systems. Hui-Min Wang and Sheng-Chieh Huang Copyright © 2014 Hui-Min Wang and Sheng-Chieh Huang. All rights reserved. Pulse Edge-Only Signaling Method Comparison for Wireline Interconnects Sun, 14 Sep 2014 10:50:09 +0000 Typical high-speed electrical transmission lines use a variety of precoding and equalization techniques to counter the frequency-dependent channel loss and environmental conditions such as ISI. In this paper, we suggest a relatively narrow-band signaling method that is resilient to the effects of ISI and crosstalk and can be implemented with existing technology. Alternative modulation schemes are analyzed in terms of effectiveness, performance, and cost. In particular, line-encoded and on-off keyed modulation methods are evaluated in simulations of transmission lines to gauge effectiveness in high-speed conditions with limiting ISI. Dmitriy Garmatyuk, Kyle Kauffman, and Andrew Martwick Copyright © 2014 Dmitriy Garmatyuk et al. All rights reserved. Robust Adaptive Fault-Tolerant Tracking Control of Three-Phase Induction Motor Thu, 04 Sep 2014 00:00:00 +0000 This paper deals with the problem of induction motor tracking control against actuator faults and external disturbances using the linear matrix inequalities (LMIs) method and the adaptive method. A direct adaptive fault-tolerant tracking controller design method is developed based on Lyapunov stability theory and a constructive algorithm based on linear matrix inequalities for online tuning of adaptive and state feedback gains to stabilize the closed-loop system in order to reduce the fault effect with disturbance attenuation. Simulation results reveal the merits of proposed robust adaptive fault-tolerant tracking control scheme on an induction motor subjected to actuator faults. Hossein Tohidi and Koksal Erenturk Copyright © 2014 Hossein Tohidi and Koksal Erenturk. All rights reserved.