Table of Contents
Advances in Endocrinology
Volume 2014 (2014), Article ID 272968, 11 pages
http://dx.doi.org/10.1155/2014/272968
Review Article

Mechanisms of Action of Indigenous Antidiabetic Plants from the Boreal Forest of Northeastern Canada

1Natural Health Products and Metabolic Diseases Laboratory, Department of Pharmacology, Université de Montreal, P.O. Box 6128, Downtown Station, Montréal, QC, Canada H3C 3J7
2Canadian Institutes of Health Research Team in Aboriginal Antidiabetic Medicines and Montreal Diabetes Research Center, Université de Montréal, P.O. Box 6128, Downtown Station, Montreal, QC, Canada
3Department of Pharmacognosy, University of Beni-Suef, Beni-Suef 62511, Egypt

Received 13 May 2014; Revised 9 July 2014; Accepted 14 July 2014; Published 10 August 2014

Academic Editor: Massimiliano Ruscica

Copyright © 2014 Hoda M. Eid and Pierre S. Haddad. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. IDF, Diabetes Atlas, IDF, 2013.
  2. A. Soliman, V. DeSanctis, M. Yassin, R. Elalaily, and N. E. Eldarsy, “Continuous glucose monitoring system and new era of early diagnosis of diabetes in high risk groups,” Indian Journal of Endocrinology and Metabolism, vol. 18, pp. 274–282, 2014. View at Google Scholar
  3. V. Douglas, Introduction to Aboriginal Health and Health Care in Canada: Bridging Health and Healing, Springer, 2013.
  4. C. H. Y. Yu and B. Zinman, “Type 2 diabetes and impaired glucose tolerance in aboriginal populations: a global perspective,” Diabetes Research and Clinical Practice, vol. 78, no. 2, pp. 159–170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Cuerrier, A. Downing, E. Patterson, and P. Haddad, “Aboriginal antidiabetic plant project with the James Bay Cree of Québec: an insightful collaboration,” Journal of Enterprising Communities, vol. 6, no. 3, pp. 251–270, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Leduc, J. Coonishish, P. Haddad, and A. Cuerrier, “Plants used by the Cree Nation of Eeyou Istchee (Quebec, Canada) for the treatment of diabetes: a novel approach in quantitative ethnobotany,” Journal of Ethnopharmacology, vol. 105, no. 1-2, pp. 55–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. P. S. Haddad, L. Musallam, L. C. Martineau et al., “Comprehensive evidence-based assessment and prioritization of potential antidiabetic medicinal plants: a case study from Canadian eastern James Bay Cree traditional medicine,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 893426, 14 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. N. J. Turner, Traditional Plant Foods of Canadian Indigenous Peoples Nutrition, Botany and Use, Gordon and Breach Publishers, 2009.
  9. J. W. Herrick and D. R. Snow, Iroquois Medical Botany, Syracuse University Press, 1995.
  10. D. C. A. Spoor, L. C. Martineau, C. Leduc et al., “Selected plant species from the Cree pharmacopoeia of northern Quebec possess anti-diabetic potential,” Canadian Journal of Physiology and Pharmacology, vol. 84, no. 8-9, pp. 847–858, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. L. C. Martineau, D. C. A. Adeyiwola-Spoor, D. Vallerand, A. Afshar, J. T. Arnason, and P. S. Haddad, “Enhancement of muscle cell glucose uptake by medicinal plant species of Canada's native populations is mediated by a common, metformin-like mechanism,” Journal of Ethnopharmacology, vol. 127, no. 2, pp. 396–406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Nachar, D. Vallerand, L. Musallam et al., “The action of antidiabetic plants of the Canadian James bay Cree traditional pharmacopeia on key enzymes of hepatic glucose homeostasis,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 189819, 9 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. T. W. Tam, R. Liu, J. T. Arnason et al., “Actions of ethnobotanically selected Cree anti-diabetic plants on human cytochrome P450 isoforms and flavin-containing monooxygenase 3,” Journal of Ethnopharmacology, vol. 126, no. 1, pp. 119–126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. T. W. Tam, R. Liu, J. T. Arnason et al., “Cree antidiabetic plant extracts display mechanism-based inactivation of CYP3A4,” Canadian Journal of Physiology and Pharmacology, vol. 89, no. 1, pp. 13–23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Cieniak, R. Liu, A. Fottinger et al., “In vitro inhibition of metabolism but not transport of gliclazide and repaglinide by Cree medicinal plant extracts,” Journal of Ethnopharmacology, vol. 150, no. 3, pp. 1087–1095, 2013. View at Publisher · View at Google Scholar
  16. J. K. Crellin and A. L. Tommie Bass, Herbal Medicine Past and Present: A Reference Guide to Medicinal Plants, Duke University Press, 1997.
  17. L. C. Martineau, J. Hervé, A. Muhamad et al., “Anti-adipogenic activities of Alnus incana and Populus balsamifera bark extracts, part I: sites and mechanisms of action,” Planta Medica, vol. 76, no. 13, pp. 1439–1446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. L. A. Nistor Baldea, L. C. Martineau, A. Benhaddou-Andaloussi, J. T. Arnason, É. Lévy, and P. S. Haddad, “Inhibition of intestinal glucose absorption by anti-diabetic medicinal plants derived from the James Bay Cree traditional pharmacopeia,” Journal of Ethnopharmacology, vol. 132, no. 2, pp. 473–482, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Gray, “Tamarack (Larch) Larix laricina,” in The Boreal Herbal: Wild Food and Medicine Plants of the North, Aroma Borealis Press, 2011. View at Google Scholar
  20. D. Johnson, L. Kershaw, A. MacKinnon, and J. Pojar, Plants of the Western Boreal Forest and Aspen Parkland, Lone Pine Publishing and the Canadian Forest Service, 1995.
  21. D. Harbilas, L. C. Martineau, C. S. Harris et al., “Evaluation of the antidiabetic potential of selected medicinal plant extracts from the Canadian boreal forest used to treat symptoms of diabetes: part II,” Canadian Journal of Physiology and Pharmacology, vol. 87, no. 6, pp. 479–492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Shang, J. A. Guerrero-Analco, L. Musallam et al., “Adipogenic constituents from the bark of Larix laricina du Roi (K. Koch; Pinaceae), an important medicinal plant used traditionally by the Cree of Eeyou Istchee (Quebec, Canada) for the treatment of type 2 diabetes symptoms,” Journal of Ethnopharmacology, vol. 141, no. 3, pp. 1051–1057, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Harbilas, D. Vallerand, A. Brault et al., “Larix laricina, an antidiabetic alternative treatment from the Cree of Northern Quebec pharmacopoeia, decreases glycemia and improves insulin sensitivity in vivo,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 296432, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Gray, “Spruce Picea glauca (white spruce) Picea mariana (black spruce),” in The Boreal Herbal: Wild Food and Medicine Plants of the North, pp. 259–264, Aroma Borealis Press, 2011. View at Google Scholar
  25. C. S. Harris, J. Lambert, A. Saleem et al., “Antidiabetic activity of extracts from needle, bark, and cone of Picea glauca: organ-specific protection from glucose toxicity and glucose deprivation,” Pharmaceutical Biology, vol. 46, no. 1-2, pp. 126–134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. V. J. Vogel, American Indian Medicine, University of Oklahoma Press, 2013.
  27. D. Moerman, Native American Ethnobotany, Timber Press, Portland, Ore, USA, 1998.
  28. L. C. Martineau, A. Muhammad, A. Saleem et al., “Anti-adipogenic activities of Alnus incana and Populus balsamifera bark extracts. Part II: bioassay-guided identification of actives salicortin and oregonin,” Planta Medica, vol. 76, no. 14, pp. 1519–1524, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Chen, C. Liu, T. J. Tschaplinski, and N. Zhao, “Genomics of secondary metabolism in populus: interactions with biotic and abiotic environments,” Critical Reviews in Plant Sciences, vol. 28, no. 5, pp. 375–392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Harbilas, A. Brault, D. Vallerand et al., “Populus balsamifera L. (Salicaceae) mitigates the development of obesity and improves insulin sensitivity in a diet-induced obese mouse model,” Journal of Ethnopharmacology, vol. 141, no. 3, pp. 1012–1020, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Harbilas, D. Vallerand, A. Brault et al., “Populus balsamifera extract and its active component salicortin reduce obesity and attenuate insulin resistance in a diet-induced obese mouse model,” Evidence-based Complementary and Alternative Medicine, vol. 2013, Article ID 172537, 13 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Foster and J. A. Duke, A Field Guide to Medicinal Plants: Eastern and Central North America, Peterson Field Guide Series, Houghton Mifflin, 1990.
  33. C. Chartier, H. Staub, and P. Goetz, “Thé du Labrador (lédon du Groenland) (Ledum groenlandicum Oeder),” Phytotherapie, vol. 3, no. 2, pp. 84–87, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. T. W. Tam, R. Liu, A. Saleem et al., “The effect of Cree traditional medicinal teas on the activity of human cytochrome P450-mediated metabolism,” Journal of Ethnopharmacology, vol. 155, no. 1, pp. 841–846, 2014. View at Google Scholar
  35. P. Black, A. Saleem, A. Dunford et al., “Seasonal variation of phenolic constituents and medicinal activities of northern labrador tea, Rhododendron tomentosum ssp subarcticum, an Inuit and cree first nations traditional medicine,” Planta Medica, vol. 77, no. 14, pp. 1655–1662, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. A. J. Krentz, R. E. Ferner, and C. J. Bailey, “Comparative tolerability profiles of oral antidiabetic agents,” Drug Safety, vol. 11, no. 4, pp. 223–241, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. C. S. Harris, L. P. Beaulieu, M. H. Fraser et al., “Inhibition of advanced glycation end product formation by medicinal plant extracts correlates with phenolic metabolites and antioxidant activity,” Planta Medica, vol. 77, no. 2, pp. 196–204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. C. S. Harris, M. Asim, A. Saleem, P. S. Haddad, J. T. Arnason, and S. A. L. Bennett, “Characterizing the cytoprotective activity of Sarracenia purpurea L., a medicinal plant that inhibits glucotoxicity in PC12 cells,” BMC Complementary and Alternative Medicine, vol. 12, article 245, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Vianna, A. Brault, L. C. Martineau, R. Couture, J. T. Arnason, and P. S. Haddad, “In vivo anti-diabetic activity of the ethanolic crude extract of Sorbus decora C.K. Schneid. (Rosacea): a medicinal plant used by Canadian James Bay Cree Nations to Treat Symptoms Related to Diabetes,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 237941, 7 pages, 2011. View at Publisher · View at Google Scholar
  40. J. A. Guerrero-Analco, L. Martineau, A. Saleem et al., “Bioassay-guided isolation of the antidiabetic principle from Sorbus decora (Rosaceae) used traditionally by the Eeyou Istchee Cree First Nations,” Journal of Natural Products, vol. 73, no. 9, pp. 1519–1523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. H. M. Eid, A. Brault, M. Ouchfoun, F. Thong, D. Vallerand, and L. Musallam, “Lingonberry (vacciniumvitis-idaea L) mobilizes L6 muscle GLUT4 transporters and exerts anti-obesity and antidiabetic effects in vivo,” Austin Journal of Endocrinology and Diabetes, vol. 1, p. 11, 2014. View at Google Scholar
  42. H. M. Eid, L. C. Martineau, A. Saleem et al., “Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant vaccinium vitis-idaea,” Molecular Nutrition and Food Research, vol. 54, no. 7, pp. 991–1003, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. H. M. Eid, M. Ouchfoun, A. Brault et al., “Lingonberry (vaccinium vitis-idaea L.) exhibits antidiabetic activities in a mouse model of diet-induced obesity,” Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 645812, 10 pages, 2014. View at Publisher · View at Google Scholar
  44. J. Capeau, “Insulin resistance and steatosis in humans,” Diabetes and Metabolism, vol. 34, no. 6, pp. 649–657, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. M. M. Ollmann and G. S. Barsh, “Down-regulation of melanocortin receptor signaling mediated by the amino terminus of Agouti protein in Xenopus melanophores,” The Journal of Biological Chemistry, vol. 274, no. 22, pp. 15837–15846, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Di Lorenzo, M. Dell'agli, M. Badea et al., “Plant food supplements with anti-inflammatory properties: a systematic review (II),” Critical Reviews in Food Science and Nutrition, vol. 53, no. 5, pp. 507–516, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. J. A. Cabrera Medaglia and C. López Silva, Addressing the Problems of Access: Protecting Sources, While Giving Users Certainty, IUCN, 2007.
  48. G. Burton and E. A. Evans-Illidge, “Emerging R and D law: the Nagoya Protocol and its implications for researchers,” ACS Chemical Biology, vol. 9, no. 3, pp. 588–591, 2014. View at Publisher · View at Google Scholar