Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2011 (2011), Article ID 218929, 7 pages
http://dx.doi.org/10.1155/2011/218929
Research Article

Comparative Genotoxicity of Cadmium and Lead in Earthworm Coelomocytes

1Biology Department, Faculty of Science, Silpakorn University, Nakorn Pathom 73000, Thailand
2Faculty of Agriculture and Life Science, Lincoln University, Canterbury, Lincoln 7647, New Zealand

Received 1 December 2010; Accepted 11 March 2011

Academic Editor: Marco Trevisan

Copyright © 2011 Ptumporn Muangphra and Ravi Gooneratne. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Kula and O. Larink, “Tests on the earthworms Eisenia fetida and Aporrectodea caliginosa,” in Handbook of Soil Invertebrate Toxicity Tests, H. Lokke and C. A. M. van Gestel, Eds., pp. 95–112, John Wiley & Sons, Chichester, UK, 1998. View at Google Scholar
  2. IARC (International Agency for Research on Cancer), “Inorganic and organic lead compounds,” in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 87, pp. 1–471, IARC, Lyon, France, 2006. View at Google Scholar
  3. IARC (International Agency for Research on Cancer), “Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry,” in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 58, pp. 119–237, IARC, Lyon, France, 1993. View at Google Scholar
  4. M. Waisberg, P. Joseph, B. Hale, and D. Beyersmann, “Molecular and cellular mechanisms of cadmium carcinogenesis,” Toxicology, vol. 192, no. 2-3, pp. 95–117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. L. R. Shugart, “DNA damage as a biomarker of exposure,” Ecotoxicology, vol. 9, no. 5, pp. 329–340, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Kurelec, “The genotoxic disease syndrome,” Marine Environmental Research, vol. 35, no. 4, pp. 341–348, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Fugère, P. Brousseau, K. Krzystyniak, D. Coderre, and M. Fournier, “Heavy metal-specific inhibition of phagocytosis and different in vitro sensitivity of heterogeneous coelomocytes from Lumbricus terrestris (Oligochaeta),” Toxicology, vol. 109, no. 2-3, pp. 157–166, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. N. P. Singh, M. T. McCoy, R. R. Tice, and E. L. Schneider, “A simple technique for quantitation of low levels of DNA damage in individual cells,” Experimental Cell Research, vol. 175, no. 1, pp. 184–191, 1988. View at Google Scholar · View at Scopus
  9. S. Cotelle and J. F. Férard, “Comet assay in genetic ecotoxicology: a review,” Environmental and Molecular Mutagenesis, vol. 34, no. 4, pp. 246–255, 1999. View at Google Scholar · View at Scopus
  10. S. A. Reinecke and A. J. Reinecke, “The comet assay as biomarker of heavy metal genotoxicity in earthworms,” Archives of Environmental Contamination and Toxicology, vol. 46, no. 2, pp. 208–215, 2004. View at Google Scholar · View at Scopus
  11. S. Sanchez-Galan, A. R. Linde, F. Ayllon, and E. Garcia-Vazquez, “Induction of micronuclei in eel (Anguilla anguilla L.) by heavy metals,” Ecotoxicology and Environmental Safety, vol. 49, no. 2, pp. 139–143, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. T. Cavas, N. N. Garanko, and V. V. Arkhipchuk, “Induction of micronuclei and binuclei in blood, gill and liver cells of fishes subchronically exposed to cadmium chloride and copper sulphate,” Food and Chemical Toxicology, vol. 43, no. 4, pp. 569–574, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. G. S. Eyambe, A. J. Goven, L. C. Fitzpatrick, B. J. Venables, and E. L. Cooper, “A non-invasive technique for sequential collection of earthworm (Lumbricus terrestris) leukocytes during subchronic immunotoxicity studies,” Laboratory Animals, vol. 25, no. 1, pp. 61–67, 1991. View at Google Scholar · View at Scopus
  14. P. Brousseau, N. Fugère, J. Bernier et al., “Evaluation of earthworm exposure to contaminated soil by cytometric assay of coelomocytes phagocytosis in Lumbricus terrestris (Oligochaeta),” Soil Biology and Biochemistry, vol. 29, no. 3-4, pp. 681–684, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Fourie, S. A. Reinecke, and A. J. Reinecke, “The determination of earthworm species sensitivity differences to cadmium genotoxicity using the comet assay,” Ecotoxicology and Environmental Safety, vol. 67, no. 3, pp. 361–368, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. Homa, E. Olchawa, S. R. Stürzenbaum, A. John Morgan, and B. Plytycz, “Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions,” Environmental Pollution, vol. 135, no. 2, pp. 275–280, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. J. Nahmani, M. E. Hodson, and S. Black, “A review of studies performed to assess metal uptake by earthworms,” Environmental Pollution, vol. 145, no. 2, pp. 402–424, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. W. C. Ma, “The influence of soil properties and worm related factors on the concentration of heavy metals in earthworms,” Pedobiologia, vol. 24, pp. 109–119, 1982. View at Google Scholar
  19. L. Z. Li, D. M. Zhou, P. Wang, and X. S. Luo, “Subcellular distribution of Cd and Pb in earthworm Eisenia fetida as affected by Ca2+ ions and Cd-Pb interaction,” Ecotoxicology and Environmental Safety, vol. 71, no. 3, pp. 632–637, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. J. M. Conder and R. P. Lanno, “Weak-electrolyte extractions and ion-exchange membranes as surrogate measures of cadmium, lead and zinc bioavailability to Eisenia fetida in artificial soils,” Chemosphere, vol. 41, pp. 1659–1668, 2002. View at Google Scholar
  21. J. A. Heddle, M. C. Cimino, M. Hayashi et al., “Micronuclei as an index of cytogenetic damage: past, present, and future,” Environmental and Molecular Mutagenesis, vol. 18, no. 4, pp. 277–291, 1991. View at Google Scholar · View at Scopus
  22. V. Kašuba and R. Rozgaj, “Micronucleus distribution in human peripheral blood lymphocytes treated in vitro with cadmium chloride in G0 and S phase of the cell cycle,” Chemosphere, vol. 49, no. 1, pp. 91–95, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Çelik, “A study on the investigation of cadmium chloride genotoxicity in rat bone marrow using micronucleus test and chromosome aberration analysis,” Toxicology and Industrial Health, vol. 21, no. 10, pp. 243–248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Gebhart and T. G. Rossman, “Mutagenicity, carcinogenicity, teratogenicity,” in Metals and Their Compounds in the Environment, E. Merian, Ed., pp. 617–640, Wiley-VCH, Weinheim, Germany, 1991. View at Google Scholar
  25. A. Forni, “Comparison of chromosome aberrations and micronuclei in testing genotoxicity in humans,” Toxicology Letters, vol. 72, no. 1-3, pp. 185–190, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Hartwig, “Role of DNA repair inhibition in lead- and cadmium-induced genotoxicity: a review,” Environmental Health Perspectives, vol. 102, supplement 3, pp. 45–50, 1994. View at Google Scholar · View at Scopus
  27. A. Hartwig, “Carcinogenicity of metal compounds: possible role of DNA repair inhibition,” Toxicology Letters, vol. 102-103, pp. 235–239, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. R. D. Snyder, “Role of active oxygen species in metal-induced DNA strand breakage in human diploid fibroblasts,” Mutation Research, vol. 21, pp. 359–365, 1988. View at Google Scholar · View at Scopus
  29. T. Ochi and M. Ohsawa, “Participation of active oxygen species in the induction of chromosomal aberrations by cadmium chloride in cultured Chinese hamster cells,” Mutation Research, vol. 143, no. 3, pp. 137–142, 1985. View at Google Scholar · View at Scopus