Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2011, Article ID 298097, 9 pages
http://dx.doi.org/10.1155/2011/298097
Research Article

Effects on Glomus mosseae Root Colonization by Paenibacillus polymyxa and Paenibacillus brasilensis Strains as Related to Soil P-Availability in Winter Wheat

1Department of Microbiology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
2Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
3College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia

Received 16 December 2010; Revised 11 February 2011; Accepted 3 March 2011

Academic Editor: M. Miransari

Copyright © 2011 Veronica Arthurson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Artursson, R. D. Finlay, and J. K. Jansson, “Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth,” Environmental Microbiology, vol. 8, no. 1, pp. 1–10, 2006. View at Publisher · View at Google Scholar · View at PubMed
  2. P. Bonfante and I.-A. Anca, “Plants, mycorrhizal fungi, and bacteria: a network of interactions,” Annual Review of Microbiology, vol. 63, pp. 363–383, 2009. View at Publisher · View at Google Scholar · View at PubMed
  3. M. Miransari, “Interactions between arbuscular mycorrhizal fungi and soil bacteria,” Applied Microbiology and Biotechnology, vol. 89, no. 4, pp. 917–930, 2011. View at Publisher · View at Google Scholar · View at PubMed
  4. L. Carpenter-Boggs, T. E. Loynachan, and P. D. Stahl, “Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes,” Soil Biology and Biochemistry, vol. 27, no. 11, pp. 1445–1451, 1995. View at Publisher · View at Google Scholar
  5. B. A. Daniels and J. M. Trappe, “Factors affecting spore germination of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeus,” Mycologia, vol. 72, no. 3, pp. 457–471, 1980. View at Google Scholar
  6. K. Mayo, R. E. Davis, and J. Motta, “Stimulation of germination of spores of Glomus versiforme by spore-associated bacteria,” Mycologia, vol. 78, no. 3, pp. 426–431, 1986. View at Google Scholar
  7. B. Mosse, “The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular-arbuscular mycorrhiza,” Transactions of the British Mycological Society, vol. 42, pp. 273–286, 1959. View at Google Scholar
  8. L. Jäderlund, V. Arthurson, U. Granhall, and J. K. Jansson, “Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: as revealed by different combinations,” FEMS Microbiology Letters, vol. 287, no. 2, pp. 174–180, 2008. View at Publisher · View at Google Scholar · View at PubMed
  9. V. Artursson, Bacterial-fungal interactions highlighted using microbiomics, Doctoral thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2005.
  10. S. W. Budi, D. Van Tuinen, G. Martinotti, and S. Gianinazzi, “Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens,” Applied and Environmental Microbiology, vol. 65, no. 11, pp. 5148–5150, 1999. View at Google Scholar
  11. B. Li, S. Ravnskov, G. Xie, and J. Larsen, “Differential effects of Paenibacillus spp. on cucumber mycorrhizas,” Mycological Progress, vol. 7, no. 4, pp. 277–284, 2008. View at Publisher · View at Google Scholar
  12. J. M. Barea, “Mycorrhiza-bacteria interactions on plant growth promotion,” in Plant Growth Promoting Rhizobacteria, A. Ogoshi, K. Kobayashi, Y. Homma, F. Kodama, N. Kondo, and S. Akino, Eds., pp. 150–158, OECD Press, Paris, France, 1997. View at Google Scholar
  13. J.-M. Barea, R. Azcon, and C. Azcon-Aguilar, “Mycorrhizosphere interactions to improve plant fitness and soil quality,” Antonie van Leeuwenhoek, vol. 81, no. 1–4, pp. 343–351, 2002. View at Publisher · View at Google Scholar
  14. E. Gamalero, M. G. Martinotti, A. Trotta, P. Lemanceau, and G. Berta, “Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions,” New Phytologist, vol. 155, no. 2, pp. 293–300, 2002. View at Publisher · View at Google Scholar
  15. R. M. N. Kucey, H. H. Janzen, and M. E. Leggett, “Microbiologically mediated increases in plant-available phosphorus,” in Advances in Agronomy, C. Brady, Ed., pp. 199–228, Academic Press, New York, NY, USA, 1989. View at Google Scholar
  16. R. I. Pikovskaya, “Mobilization of phosphorus in soil in connection with the vital activity of some microbial species,” Mikrobiologiya, vol. 17, pp. 362–370, 1948. View at Google Scholar
  17. T. R. Scheublin, I. R. Sanders, C. Keel, and J. R. Van Der Meer, “Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi,” ISME Journal, vol. 4, no. 6, pp. 752–763, 2010. View at Publisher · View at Google Scholar · View at PubMed
  18. M. Filion, M. St-Arnaud, and J. A. Fortin, “Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms,” New Phytologist, vol. 141, no. 3, pp. 525–533, 1999. View at Publisher · View at Google Scholar
  19. J. F. Toljander, B. D. Lindahl, L. R. Paul, M. Elfstrand, and R. D. Finlay, “Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure,” FEMS Microbiology Ecology, vol. 61, no. 2, pp. 295–304, 2007. View at Publisher · View at Google Scholar · View at PubMed
  20. K. Mansfeld-Giese, J. Larsen, and L. Bodker, “Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices,” FEMS Microbiology Ecology, vol. 41, no. 2, pp. 133–140, 2002. View at Publisher · View at Google Scholar
  21. J. F. Toljander, V. Artursson, L. R. Paul, J. K. Jansson, and R. D. Finlay, “Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species,” FEMS Microbiology Letters, vol. 254, no. 1, pp. 34–40, 2006. View at Publisher · View at Google Scholar · View at PubMed
  22. T. Lindberg and U. Granhall, “Isolation and characterization of dinitrogen-fixing bacteria from the rhizosphere of temperate cereals and forage grasses,” Applied and Environmental Microbiology, vol. 48, no. 4, pp. 683–689, 1984. View at Google Scholar
  23. T. Lindberg, U. Granhall, and K. Tomenius, “Infectivity and acetylene reduction of diazotrophic rhizosphere bacteria in wheat (Triticum aestivum) seedlings under gnotobiotic conditions,” Biology and Fertility of Soils, vol. 1, no. 3, pp. 123–129, 1985. View at Publisher · View at Google Scholar
  24. T. Lindberg and U. Granhall, “Acetylene reduction in gnotobiotic cultures with rhizosphere bacteria and wheat,” Plant and Soil, vol. 92, no. 2, pp. 171–180, 1986. View at Publisher · View at Google Scholar
  25. S. Timmusk, B. Nicander, U. Granhall, and E. Tillberg, “Cytokinin production by Paenibacillus polymyxa,” Soil Biology and Biochemistry, vol. 31, no. 13, pp. 1847–1852, 1999. View at Publisher · View at Google Scholar
  26. I. von der Weid, G. F. Duarte, J. D. van Elsas, and L. Seldin, “Paeninacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil,” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 6, pp. 2147–2153, 2002. View at Publisher · View at Google Scholar
  27. L. Jäderlund, M. Hellman, I. Sundh, M. J. Bailey, and J. K. Jansson, “Use of a novel nonantibiotic triple marker gene cassette to monitor high survival of Pseudomonas fluorescens SBW25 on winter wheat in the field,” FEMS Microbiology Ecology, vol. 63, no. 2, pp. 156–168, 2008. View at Publisher · View at Google Scholar · View at PubMed
  28. J. Kroymann, S. Donnerhacke, D. Schnabelrauch, and T. Mitchell-Olds, “Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 24, pp. 14587–14592, 2003. View at Google Scholar
  29. V. Artursson and J. K. Jansson, “Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae,” Applied and Environmental Microbiology, vol. 69, no. 10, pp. 6208–6215, 2003. View at Publisher · View at Google Scholar
  30. T. P. McGonigle, M. H. Miller, D. G. Evans, G. L. Fairchild, and J. A. Swan, “A new method which gives an objective measure of colonization of roots by vesiculararbuscular mycorrhizal fungi,” New Phytologist, vol. 115, no. 3, pp. 495–501, 1990. View at Google Scholar
  31. J. L. M. De Boer, U. Kohlmeyer, P. M. Breugem, and T. Van Der Velde-Koerts, “Determination of total dissolved phosphorus in water samples by axial inductively coupled plasma atomic emission spectrometry,” Fresenius' Journal of Analytical Chemistry, vol. 360, no. 1, pp. 132–136, 1998. View at Google Scholar
  32. J. Yadav, J. P. Verma, and K. N. Tiwari, “Plant growth promoting acitivities of fungi and their effect on chichpea plant growth,” Asian Journal of Biological Sciences, vol. 4, no. 3, pp. 291–299, 2011. View at Publisher · View at Google Scholar
  33. M. Edi-Premous, M. A. Moaurad, and P. L. G. Vleck, “Effect of phosphate solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere,” Indonesian Journal of Crop Science, vol. 11, no. 1, pp. 13–23, 1996. View at Google Scholar
  34. R. I. Larson and J. L. Neal Jr., “Selective colonization of the rhizosphere of wheat by nitrogen-fixing bacteria,” Ecological Bulletins, vol. 26, pp. 331–342, 1978. View at Google Scholar
  35. J. M. Barea and C. Azcon-Aguilar, “Production of plant growth-regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae,” Applied and Environmental Microbiology, vol. 43, no. 4, pp. 810–813, 1982. View at Google Scholar
  36. P. Frey-Klett, J. Garbaye, and M. Tarkka, “The mycorrhiza helper bacteria revisited,” New Phytologist, vol. 176, no. 1, pp. 22–36, 2007. View at Publisher · View at Google Scholar · View at PubMed
  37. J. Garbaye, “Tansley review no. 76. Helper bacteria: a new dimension to the mycorrhizal symbiosis,” New Phytologist, vol. 128, no. 2, pp. 197–210, 1994. View at Google Scholar
  38. K. Y. Kim, D. Jordan, and G. A. McDonald, “Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity,” Biology and Fertility of Soils, vol. 26, no. 2, pp. 79–87, 1998. View at Publisher · View at Google Scholar
  39. J. Kohler, F. Caravaca, L. Carrasco, and A. Roldán, “Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa,” Applied Soil Ecology, vol. 35, no. 3, pp. 480–487, 2007. View at Publisher · View at Google Scholar
  40. R. Azcon, J. M. Barea, and D. S. Hayman, “Utilization of rock phosphate in alkaline soils by plants inoculated with mycorrhizal fungi and phosphate-solubilizing bacteria,” Soil Biology and Biochemistry, vol. 8, no. 2, pp. 135–138, 1976. View at Google Scholar
  41. J. M. Barea, R. Azcon, and D. S. Hayman, “Possible synergistic interactions between Endogone and phosphate-solubilizing bacteria in low-phosphate soils,” in Endomycorrhizas. Proceedings of a Symposium Held at the University of Leeds, F. E. Sanders, B. Mosse, and P. B. Tinker, Eds., pp. 409–417, Academic press, New York, NY, USA, 1975. View at Google Scholar
  42. K. Tawaraya, M. Naito, and T. Wagatsuma, “Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi,” Journal of Plant Nutrition, vol. 29, no. 4, pp. 657–665, 2006. View at Publisher · View at Google Scholar
  43. M. Toro, R. Azcon, and J. M. Barea, “The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition Medicago sativa,” New Phytologist, vol. 138, no. 2, pp. 265–273, 1998. View at Publisher · View at Google Scholar
  44. T. Lindberg, Rhizosphere nitrogen fixation in cereals and forage grasses, Doctoral thesis, Department of Microbiology, Uppsala, Sweden, 1985.