Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2011, Article ID 561975, 11 pages
http://dx.doi.org/10.1155/2011/561975
Review Article

The Importance of Endospore-Forming Bacteria Originating from Soil for Contamination of Industrial Food Processing

Technology and Food Science Unit, Institute for Agricultural and Fisheries Research (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium

Received 28 February 2011; Accepted 5 July 2011

Academic Editor: Ismail Saadoun

Copyright © 2011 Marc Heyndrickx. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Andersson, U. Ronner, and P. E. Granum, “What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens?” International Journal of Food Microbiology, vol. 28, no. 2, pp. 145–155, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Rodgers, “Long shelf life cook-chill technologies: food safety risks and solutions,” Food Australia, vol. 55, no. 3, pp. 80–83, 2003. View at Google Scholar · View at Scopus
  3. P. Scheldeman, L. Herman, S. Foster, and M. Heyndrickx, “Bacillus sporothermodurans and other highly heat-resistant spore formers in milk,” Journal of Applied Microbiology, vol. 101, no. 3, pp. 542–555, 2006. View at Publisher · View at Google Scholar · View at PubMed
  4. M. H. Guinebretière, F. L. Thompson, A. Sorokin et al., “Ecological diversification in the Bacillus cereus group,” Environmental Microbiology, vol. 10, no. 4, pp. 851–865, 2008. View at Publisher · View at Google Scholar · View at PubMed
  5. S. Vilain, Y. Luo, M. B. Hildreth, and V. S. Brözel, “Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil,” Applied and Environmental Microbiology, vol. 72, no. 7, pp. 4970–4977, 2006. View at Publisher · View at Google Scholar · View at PubMed
  6. H. König, “Bacillus species in the intestine of termites and other soil invertebrates,” Journal of Applied Microbiology, vol. 101, no. 3, pp. 620–627, 2006. View at Publisher · View at Google Scholar · View at PubMed
  7. G. B. Jensen, B. M. Hansen, J. Eilenberg, and J. Mahillon, “The hidden lifestyles of Bacillus cereus and relatives,” Environmental Microbiology, vol. 5, no. 8, pp. 631–640, 2003. View at Publisher · View at Google Scholar
  8. F. Carlin, J. Brillard, V. Broussolle et al., “Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment,” Food Research International, vol. 43, no. 7, pp. 1885–1894, 2010. View at Publisher · View at Google Scholar
  9. M. M. M. Vissers, M. C. te Giffel, F. Driehuis, P. De Jong, and J. M. G. Lankveld, “Minimizing the level of Bacillus cereus spores in farm tank milk,” Journal of Dairy Science, vol. 90, no. 7, pp. 3286–3293, 2007. View at Publisher · View at Google Scholar · View at PubMed
  10. M. M. M. Vissers, F. Driehuis, M. C. te Giffel, P. De Jong, and J. M. G. Lankveld, “Minimizing the level of butyric acid bacteria spores in farm tank milk,” Journal of Dairy Science, vol. 90, no. 7, pp. 3278–3285, 2007. View at Publisher · View at Google Scholar · View at PubMed
  11. M. Nevas, M. Lindström, A. Hörman, R. Keto-Timonen, and H. Korkeala, “Contamination routes of Clostridium botulinum in the honey production environment,” Environmental Microbiology, vol. 8, no. 6, pp. 1085–1094, 2006. View at Publisher · View at Google Scholar · View at PubMed
  12. C. Lúquez, M. I. Bianco, L. I. T. de Jong et al., “Distribution of botulinum toxin-producing clostridia in soils of Argentina,” Applied and Environmental Microbiology, vol. 71, no. 7, pp. 4137–4139, 2005. View at Publisher · View at Google Scholar · View at PubMed
  13. J. Li, S. Sayeed, and B. A. McClane, “Prevalence of enterotoxigenic Clostridium perfringens isolates in Pittsburgh (Pennsylvania) area soils and home kitchens,” Applied and Environmental Microbiology, vol. 73, no. 22, pp. 7218–7224, 2007. View at Publisher · View at Google Scholar · View at PubMed
  14. G. Moschonas, D. J. Bolton, J. J. Sheridan, and D. A. McDowell, “Isolation and sources of blown pack spoilage clostridia in beef abattoirs,” Journal of Applied Microbiology, vol. 107, no. 2, pp. 616–624, 2009. View at Publisher · View at Google Scholar · View at PubMed
  15. M. C. Julien, P. Dion, C. Lafrenière, H. Antoun, and P. Drouin, “Sources of clostridia in raw milk on farms,” Applied and Environmental Microbiology, vol. 74, no. 20, pp. 6348–6357, 2008. View at Publisher · View at Google Scholar · View at PubMed
  16. X. Y. Wu, M. Walker, B. Vanselow, R. L. Chao, and J. Chin, “Characterization of mesophilic Bacilli in faeces of feedlot cattle,” Journal of Applied Microbiology, vol. 102, no. 3, pp. 872–879, 2007. View at Publisher · View at Google Scholar · View at PubMed
  17. M. Magnusson, A. Christiansson, and B. Svensson, “Bacillus cereus spores during housing of dairy cows: factors affecting contamination of raw milk,” Journal of Dairy Science, vol. 90, no. 6, pp. 2745–2754, 2007. View at Publisher · View at Google Scholar · View at PubMed
  18. P. Scheldeman, A. Pil, L. Herman, P. De Vos, and M. Heyndrickx, “Incidence and diversity of potentially highly heat-resistant spores isolated at dairy farms,” Applied and Environmental Microbiology, vol. 71, no. 3, pp. 1480–1494, 2005. View at Publisher · View at Google Scholar · View at PubMed
  19. L. P. Stenfors Arnesen, A. Fagerlund, and P. E. Granum, “From soil to gut: Bacillus cereus and its food poisoning toxins,” FEMS Microbiology Reviews, vol. 32, no. 4, pp. 579–606, 2008. View at Publisher · View at Google Scholar · View at PubMed
  20. J. Bassett and P. McClure, “A risk assessment approach for fresh fruits,” Journal of Applied Microbiology, vol. 104, no. 4, pp. 925–943, 2008. View at Publisher · View at Google Scholar · View at PubMed
  21. K. Frederiksen, H. Rosenquist, K. Jørgensen, and A. Wilcks, “Occurrence of natural Bacillus thuringiensis contaminants and residues of Bacillus thuringiensis-based insecticides on fresh fruits and vegetables,” Applied and Environmental Microbiology, vol. 72, no. 5, pp. 3435–3440, 2006. View at Publisher · View at Google Scholar · View at PubMed
  22. Y. P. de Vries, Bacillus cereus spore formation, structure, and germination, Ph.D. thesis, 2011.
  23. J. G. E. Wijman, P. P. L. A. de Leeuw, R. Moezelaar, M. H. Zwietering, and T. Abee, “Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion,” Applied and Environmental Microbiology, vol. 73, no. 5, pp. 1481–1488, 2007. View at Publisher · View at Google Scholar · View at PubMed
  24. J. H. Ryu and L. R. Beuchat, “Biofilm formation and sporulation by Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer,” Journal of Food Protection, vol. 68, no. 12, pp. 2614–2622, 2005. View at Google Scholar
  25. F. Carlin, M. Fricker, A. Pielaat et al., “Emetic toxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group,” International Journal of Food Microbiology, vol. 109, no. 1-2, pp. 132–138, 2006. View at Publisher · View at Google Scholar · View at PubMed
  26. EFSA (European Food Safety Authority), “Opinion of the scientific panel on biological hazards on Bacillus cereus and other Bacillus sp. in foodstuffs,” EFSA Journal, vol. 175, pp. 1–49, 2004. View at Google Scholar
  27. M. Heyndrickx, S. Marchand, V. De Jonghe, K. Smet, K. Coudijzer, and J. De Block, “Understanding and preventing consumer milk microbial spoilage and chemical deterioration,” in Improving the Safety and Quality of Milk, M. W. Griffiths, Ed., vol. 2 of Improving Quality in Milk Products, pp. 97–135, Woodhead Publishing Limited, Cambridge, UK, 2010. View at Google Scholar
  28. B. Svensson, A. Monthán, M. H. Guinebretière, C. Nguyen-Thé, and A. Christiansson, “Toxin production potential and the detection of toxin genes among strains of the Bacillus cereus group isolated along the dairy production chain,” International Dairy Journal, vol. 17, no. 10, pp. 1201–1208, 2007. View at Publisher · View at Google Scholar
  29. A. Coorevits, V. De Jonghe, J. Vandroemme et al., “Comparative analysis of the diversity of aerobic spore-forming bacteria in raw milk from organic and conventional dairy farms,” Systematic and Applied Microbiology, vol. 31, no. 2, pp. 126–140, 2008. View at Publisher · View at Google Scholar · View at PubMed
  30. M. C. te Giffel, A. Wagendorp, A. Herrewegh, and F. Driehuis, “Bacterial spores in silage and raw milk,” Antonie van Leeuwenhoek, vol. 81, no. 1–4, pp. 625–630, 2002. View at Publisher · View at Google Scholar
  31. M. M. M. Vissers, M. C. te Giffel, F. Driehuis, P. De Jong, and J. M. G. Lankveld, “Predictive modeling of Bacillus cereus spores in farm tank milk during grazing and housing periods,” Journal of Dairy Science, vol. 90, no. 1, pp. 281–292, 2007. View at Google Scholar
  32. A. Christiansson, J. Bertilsson, and B. Svensson, “Bacillus cereus spores in raw milk: factors affecting the contamination of milk during the grazing period,” Journal of Dairy Science, vol. 82, no. 2, pp. 305–314, 1999. View at Google Scholar
  33. C. L. Little and I. A. Gillespie, “Prepared salads and public health,” Journal of Applied Microbiology, vol. 105, no. 6, pp. 1729–1743, 2008. View at Publisher · View at Google Scholar · View at PubMed
  34. T. Lund, M. L. De Buyser, and P. E. Granum, “A new cytotoxin from Bacillus cereus that may cause necrotic enteritis,” Molecular Microbiology, vol. 38, no. 2, pp. 254–261, 2000. View at Publisher · View at Google Scholar
  35. F. Carlin, M. H. Guinebretiere, C. Choma, R. Pasqualini, A. Braconnier, and C. Nguyen-The, “Spore-forming bacteria in commercial cooked, pasteurised and chilled vegetable purees,” Food Microbiology, vol. 17, no. 2, pp. 153–165, 2000. View at Publisher · View at Google Scholar
  36. M. H. Guinebretière and C. Nguyen-The, “Sources of Bacillus cereus contamination in a pasteurized zucchini purée processing line, differentiated by two PCR-based methods,” FEMS Microbiology Ecology, vol. 43, no. 2, pp. 207–215, 2003. View at Publisher · View at Google Scholar
  37. A. L. Afchain, F. Carlin, C. Nguyen-The, and I. Albert, “Improving quantitative exposure assessment by considering genetic diversity of B. cereus in cooked, pasteurised and chilled foods,” International Journal of Food Microbiology, vol. 128, no. 1, pp. 165–173, 2008. View at Publisher · View at Google Scholar · View at PubMed
  38. N. Jensen, “Alicyclobacillus—a new challenge for the food industry,” Food Australia, vol. 51, no. 1-2, pp. 33–36, 1999. View at Google Scholar
  39. K. Goto, H. Matsubara, K. Mochida et al., “Alicyclobacillus herbarius sp. nov., a novel bacterium containing ω-cycloheptane fatty acids, isolated from herbal tea,” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 1, pp. 109–113, 2002. View at Google Scholar
  40. K. Goto, K. Mochida, M. Asahara, M. Suzuki, H. Kasai, and A. Yokota, “Alicyclobacillus pomorum sp. nov., a novel thermo-acidophilic, endospore-forming bacterium that does not possess ω-alicyclic fatty acids, and emended description of the genus Alicyclobacillus,” International Journal of Systematic and Evolutionary Microbiology, vol. 53, no. 5, pp. 1537–1544, 2003. View at Publisher · View at Google Scholar
  41. H. Matsubara, K. Goto, T. Matsumura et al., “Alicyclobacillus acidiphilus sp. nov., a novel thermo-acidophilic, ω-alicyclic fatty acid-containing bacterium isolated from acidic beverages,” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 5, pp. 1681–1685, 2002. View at Publisher · View at Google Scholar
  42. F. M. Silva, P. Gibbs, M. C. Vieira, and C. L. M. Silva, “Thermal inactivation of Alicyclobacillus acidoterrestris spores under different temperature, soluble solids and pH conditions for the design of fruit processes,” International Journal of Food Microbiology, vol. 51, no. 2-3, pp. 95–103, 1999. View at Publisher · View at Google Scholar
  43. N. Jensen and F. B. Whitfield, “Role of Alicyclobacillus acidoterrestris in the development of a disinfectant taint in shelf-stable fruit juice,” Letters in Applied Microbiology, vol. 36, no. 1, pp. 9–14, 2003. View at Publisher · View at Google Scholar
  44. M. Walker and C. A. Phillips, “Alicyclobacillus acidoterrestris: an increasing threat to the fruit juice industry?” International Journal of Food Science and Technology, vol. 43, no. 2, pp. 250–260, 2008. View at Publisher · View at Google Scholar
  45. I. C. McKnight, M. N. U. Eiroa, A. S. Sant'Ana, and P. R. Massaguer, “Alicyclobacillus acidoterrestris in pasteurized exotic Brazilian fruit juices: isolation, genotypic characterization and heat resistance,” Food Microbiology, vol. 27, no. 8, pp. 1016–1022, 2010. View at Publisher · View at Google Scholar · View at PubMed
  46. M. E. Parish and R. M. Goodrich, “Recovery of presumptive Alicyclobacillus strains from orange fruit surfaces,” Journal of Food Protection, vol. 68, no. 10, pp. 2196–2200, 2005. View at Google Scholar
  47. S. Mcintyre, J. Y. Ikawa, N. Parkinson, J. Haglund, and J. Lee, “Characteristics of an acidophilic Bacillus strain isolated from shelf-stable juices,” Journal of Food Protection, vol. 58, no. 3, pp. 319–321, 1995. View at Google Scholar
  48. M. Heyndrickx and P. Scheldeman, “Bacilli associated with spoilage in dairy and other food products,” in Applications and Systematics of Bacillus and Relatives, R. Berkely, M. Heyndrickx, N. A. Logan, and P. De Vos, Eds., pp. 64–82, Blackwell Science, Oxford, UK, 2002. View at Google Scholar
  49. W. H. Groenewald, P. A. Gouws, and R. C. Witthuhn, “Isolation and identification of species of Alicyclobacillus from orchard soil in the Western Cape, South Africa,” Extremophiles, vol. 12, no. 1, pp. 159–163, 2008. View at Publisher · View at Google Scholar · View at PubMed
  50. K. Goto, A. Nishibori, Y. Wasada, K. Furuhata, M. Fukuyama, and M. Hara, “Identification of thermo-acidophilic bacteria isolated from the soil of several Japanese fruit orchards,” Letters in Applied Microbiology, vol. 46, no. 3, pp. 289–294, 2008. View at Publisher · View at Google Scholar · View at PubMed
  51. W. H. Groenewald, P. A. Gouws, and R. C. Witthuhn, “Isolation, identification and typification of Alicyclobacillus acidoterrestris and Alicyclobacillus acidocaldarius strains from orchard soil and the fruit processing environment in South Africa,” Food Microbiology, vol. 26, no. 1, pp. 71–76, 2009. View at Publisher · View at Google Scholar · View at PubMed
  52. G. W. Gould, “History of science—spores: Lewis B Perry Memorial Lecture 2005,” Journal of Applied Microbiology, vol. 101, no. 3, pp. 507–513, 2006. View at Publisher · View at Google Scholar · View at PubMed
  53. J. D. Kim, D. W. Lee, K. S. Lee, C. H. Choi, and K. H. Kang, “Distribution and antimicrobial susceptibility of Clostridium species in soil contaminated with domestic livestock feces of Korea,” Journal of Microbiology and Biotechnology, vol. 14, no. 2, pp. 401–410, 2004. View at Google Scholar
  54. M. Del Mar Gamboa, E. Rodríguez, and P. Vargas, “Diversity of mesophilic clostridia in Costa Rican soils,” Anaerobe, vol. 11, no. 6, pp. 322–326, 2005. View at Publisher · View at Google Scholar · View at PubMed
  55. J. D. Kim, D. W. Lee, K. S. Lee, C. H. Choi, and K. H. Kang, “Distribution and antimicrobial susceptibility of Clostridium species in soil contaminated with domestic livestock feces of Korea,” Journal of Microbiology and Biotechnology, vol. 14, no. 2, pp. 401–410, 2004. View at Google Scholar
  56. M. W. Peck, K. E. Goodburn, R. P. Betts, and S. C. Stringer, “Assessment of the potential for growth and neurotoxin formation by non-proteolytic Clostridium botulinum in short shelf-life commercial foods designed to be stored chilled,” Trends in Food Science and Technology, vol. 19, no. 4, pp. 207–216, 2008. View at Publisher · View at Google Scholar
  57. M. Lindström, K. Kiviniemi, and H. Korkeala, “Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing,” International Journal of Food Microbiology, vol. 108, no. 1, pp. 92–104, 2006. View at Publisher · View at Google Scholar · View at PubMed
  58. K. H. Adam, S. H. Flint, and G. Brightwell, “Psychrophilic and psychrotrophic clostridia: sporulation and germination processes and their role in the spoilage of chilled, vacuum-packaged beef, lamb and venison,” International Journal of Food Science and Technology, vol. 45, no. 8, pp. 1539–1544, 2010. View at Publisher · View at Google Scholar
  59. D. M. Broda, R. G. Bell, J. A. Boerema, and D. R. Musgrave, “The abattoir source of culturable psychrophilic Clostridium spp. causing 'blown pack' spoilage of vacuum-packed chilled venison,” Journal of Applied Microbiology, vol. 93, no. 5, pp. 817–824, 2002. View at Publisher · View at Google Scholar
  60. J. A. Boerema, D. M. Broda, and R. G. Bell, “Abattoir sources of psychrophilic clostridia causing blown pack spoilage of vacuum-packed chilled meats determined by culture-based and molecular detection procedures,” Letters in Applied Microbiology, vol. 36, no. 6, pp. 406–411, 2003. View at Publisher · View at Google Scholar
  61. R. M. Clemens, K. H. Adam, and G. Brightwell, “Contamination levels of Clostridium estertheticum spores that result in gaseous spoilage of vacuum-packaged chilled beef and lamb meat,” Letters in Applied Microbiology, vol. 50, no. 6, pp. 591–596, 2010. View at Publisher · View at Google Scholar · View at PubMed
  62. M. M. M. Vissers, F. Driehuis, M. C. te Giffel, P. De Jong, and J. M. G. Lankveld, “Concentrations of butyric acid bacteria spores in silage and relationships with aerobic deterioration,” Journal of Dairy Science, vol. 90, no. 2, pp. 928–936, 2007. View at Google Scholar
  63. M. M. M. Vissers, F. Driehuis, M. C. te Giffel, P. De Jong, and J. M. G. Lankveld, “Improving farm management by modeling the contamination of farm tank milk with butyric acid bacteria,” Journal of Dairy Science, vol. 89, no. 3, pp. 850–858, 2006. View at Google Scholar