Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2011, Article ID 836271, 7 pages
http://dx.doi.org/10.1155/2011/836271
Research Article

Persistence of Two Campylobacter jejuni Strains in Soil and on Spinach Plants

1Uppsala Biocenter, Department of Microbiology, Swedish University of Agricultural Sciences, P. O. Box 7025, 750 07 Uppsala, Sweden
2Health and Environment Department, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria

Received 2 September 2010; Accepted 18 October 2010

Academic Editor: Rodrigo Studart Corrêa

Copyright © 2011 Lotta Jäderlund et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. R. Friedman, J. Neimann, H. C. Wegener, and R. V. Tauxe, “Epidemiology of Campylobacter jejuni infections in the United States and other industrialized countries,” in Campylobacter, M. J. Blaser, Ed., ASM press, Washington, DC, USA, 2nd edition, 2000. View at Google Scholar
  2. M. T. Brandl, A. F. Haxo, A. H. Bates, and R. E. Mandrell, “Comparison of survival of Campylobacter jejuni in the phyllosphere with that in the rhizosphere of spinach and radish plants,” Applied and Environmental Microbiology, vol. 70, no. 2, pp. 1182–1189, 2004. View at Publisher · View at Google Scholar
  3. C. E. Park and G. W. Sanders, “Occurrence of thermotolerant campylobacters in fresh vegetables sold at farmers' outdoor markets and supermarkets,” Canadian Journal of Microbiology, vol. 38, no. 4, pp. 313–316, 1992. View at Google Scholar
  4. M. Federighi, C. Magras, M. F. Pilet, D. Woodward, W. Johnson, F. Jugiau, and J. L. Jouve, “Incidence of thermotolerant Campylobacter in foods assessed by NF ISO 10272 standard: results of a two-year study,” Food Microbiology, vol. 16, no. 2, pp. 195–204, 1999. View at Publisher · View at Google Scholar
  5. C. A. Phillips, “The isolation of Campylobacter spp. From modified atmosphere packaged foods,” International Journal of Environmental Health Research, vol. 8, no. 3, pp. 215–221, 1998. View at Publisher · View at Google Scholar
  6. M. P. Doyle and J. L. Schoeni, “Isolation of Campylobacter jejuni from retail mushrooms,” Applied and Environmental Microbiology, vol. 51, no. 2, pp. 449–450, 1986. View at Google Scholar · View at Scopus
  7. A. Kumar, R. K. Agarwal, K. N. Bhilegaonkar, B. R. Shome, and V. N. Bachhil, “Occurrence of Campylobacter jejuni in vegetables,” International Journal of Food Microbiology, vol. 67, no. 1-2, pp. 153–155, 2001. View at Publisher · View at Google Scholar
  8. M. L. Hutchison, L. D. Walters, S. M. Avery, F. Munro, and A. Moore, “Analyses of livestock production, waste storage, and pathogen levels and prevalences in farm manures,” Applied and Environmental Microbiology, vol. 71, no. 3, pp. 1231–1236, 2005. View at Publisher · View at Google Scholar · View at PubMed
  9. S. V. Ravva, Z. Sarreal, B. Duffy, and L. H. Stanker, “Survival of Escherichia coli o157:h7 and salmonella enterica in manure waste water from dairy lagoons,” Journal of Applied Microbiology, vol. 101, pp. 891–902, 2006. View at Google Scholar
  10. B. Duffy, C. Sarreal, S. Ravva, and L. Stanker, “Effect of molasses on regrowth of E. coli O157:H7 and Salmonella in compost teas,” Compost Science and Utilization, vol. 12, no. 1, pp. 93–96, 2004. View at Google Scholar
  11. M. L. Hutchison, L. D. Walters, A. Moore, K. M. Crookes, and S. M. Avery, “Effect of length of time before incorporation on survival of pathogenic bacteria present in livestock wastes applied to agricultural soil,” Applied and Environmental Microbiology, vol. 70, no. 9, pp. 5111–5118, 2004. View at Publisher · View at Google Scholar · View at PubMed
  12. B. J. Gilpin, B. Robson, P. Scholes, F. Nourozi, and L. W. Sinton, “Survival of Campylobacter spp. in bovine faeces on pasture,” Letters in Applied Microbiology, vol. 48, no. 2, pp. 162–166, 2009. View at Publisher · View at Google Scholar · View at PubMed
  13. B. R. Hoar, E. R. Atwill, C. Elmi, W. W. Utterback, and A. J. Edmondson, “Comparison of fecal samples collected per rectum and off the ground for estimation of environmental contamination attributable to beef cattle,” American Journal of Veterinary Research, vol. 60, no. 11, pp. 1352–1356, 1999. View at Google Scholar
  14. M. L. Hutchison, L. D. Walters, S. M. Avery, and A. Moore, “Decline of zoonotic agents in livestock waste and bedding heaps,” Journal of Applied Microbiology, vol. 99, no. 2, pp. 354–362, 2005. View at Publisher · View at Google Scholar · View at PubMed
  15. F. A. Nicholson, S. J. Groves, and B. J. Chambers, “Pathogen survival during livestock manure storage and following land application,” Bioresource Technology, vol. 96, no. 2, pp. 135–143, 2005. View at Publisher · View at Google Scholar · View at PubMed
  16. L. W. Sinton, R. R. Braithwaite, C. H. Hall, and M. L. Mackenzie, “Survival of indicator and pathogenic bacteria in bovine feces on pasture,” Applied and Environmental Microbiology, vol. 73, no. 24, pp. 7917–7925, 2007. View at Publisher · View at Google Scholar · View at PubMed
  17. W. Xu, T. Reuter, and T. Reuter, “A biosecure composting system for disposal of cattle carcasses and manure following infectious disease outbreak,” Journal of Environmental Quality, vol. 38, no. 2, pp. 437–450, 2009. View at Publisher · View at Google Scholar · View at PubMed
  18. G. Douglas Inglis, T. A. McAllister, F. J. Larney, and E. Topp, “Prolonged survival of campylobacter species in bovine manure compost,” Applied and Environmental Microbiology, vol. 76, no. 4, pp. 1110–1119, 2010. View at Publisher · View at Google Scholar · View at PubMed
  19. G. Berg, L. Eberl, and A. Hartmann, “The rhizosphere as a reservoir for opportunistic human pathogenic bacteria,” Environmental Microbiology, vol. 7, no. 11, pp. 1673–1685, 2005. View at Publisher · View at Google Scholar · View at PubMed
  20. S. Compant, H. Kaplan, A. Sessitsch, J. Nowak, E. Ait Barka, and C. Clément, “Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues,” FEMS Microbiology Ecology, vol. 63, no. 1, pp. 84–93, 2008. View at Publisher · View at Google Scholar · View at PubMed
  21. J. Parkhill, B. W. Wren, and B. W. Wren, “The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences,” Nature, vol. 403, no. 6770, pp. 665–668, 2000. View at Publisher · View at Google Scholar · View at PubMed
  22. B. M. Pearson, D. J. H. Gaskin, R. P. A. M. Segers, J. M. Wells, P. J. M. Nuijten, and A. H. M. Van Vliet, “The complete genome sequence of Campylobacter jejuni strain 81116 (NCTC11828),” Journal of Bacteriology, vol. 189, no. 22, pp. 8402–8403, 2007. View at Publisher · View at Google Scholar · View at PubMed
  23. G. D. Inglis and L. D. Kalischuk, “Direct quantification of Campylobacter jejuni and Campylobacter lanienae in feces of cattle by real-time quantitative PCR,” Applied and Environmental Microbiology, vol. 70, no. 4, pp. 2296–2306, 2004. View at Publisher · View at Google Scholar
  24. V. Artursson, R. D. Finlay, and J. K. Jansson, “Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species,” Environmental Microbiology, vol. 7, no. 12, pp. 1952–1966, 2005. View at Publisher · View at Google Scholar · View at PubMed
  25. E. Urbach, K. L. Vergin, and S. J. Giovannoni, “Immunochemical detection and isolation of DNA from metabolically active bacteria,” Applied and Environmental Microbiology, vol. 65, no. 3, pp. 1207–1213, 1999. View at Google Scholar
  26. K. Rudi, B. Moen, S. M. Drømtorp, and A. L. Holck, “Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples,” Applied and Environmental Microbiology, vol. 71, no. 2, pp. 1018–1024, 2005. View at Publisher · View at Google Scholar · View at PubMed
  27. P. Delgado-Viscogliosi, L. Solignac, and J.-M. Delattre, “Viability PCR, a culture-independent method for rapid and selective quantification of viable Legionella pneumophila cells in environmental water samples,” Applied and Environmental Microbiology, vol. 75, no. 11, pp. 3502–3512, 2009. View at Publisher · View at Google Scholar · View at PubMed