Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2012, Article ID 430354, 12 pages
http://dx.doi.org/10.1155/2012/430354
Research Article

The Effect of Dissolved Humic Acids on Aluminosilicate Formation and Associated Carbon Sequestration

1School of Earth and Environmental Sciences, Queens College CUNY, Flushing, NY 11367, USA
2Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
3Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA

Received 20 September 2011; Revised 19 November 2011; Accepted 19 November 2011

Academic Editor: Teodoro Miano

Copyright © 2012 Ashaki A. Rouff et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G.F. Vance, F. J. Stevenson, and F. J. Sikora, “Environmental chemistry of aluminum-organic complexes,” in The Environmental Chemistry of Aluminum, G. Sposito, Ed., pp. 169–220, Lewis, Boca Raton, Fla, USA, 1995. View at Google Scholar
  2. H. Bilinski, L. Horvath, N. Ingri, and S. Sjoberg, “Aluminosilicate phases during initial clay formation: H+-Al3+-oxalic acid-Silicic acid-Na+ system,” Journal of Soil Science, vol. 41, no. 1, pp. 119–132, 1990. View at Google Scholar · View at Scopus
  3. K. Wada, “Structure and formation of non- and para-crystalline aluminosilicate clay minerals: a review,” in Clay Controlling the Environment, G. J. Churchman, R. W. Fitzpatrick, and R. A. Eggleton, Eds., pp. 443–448, CSIRO Publishing, Melbourne, Australia, 1995. View at Google Scholar
  4. R. L. Parfitt, “Allophane and imogolite: role in soil biogeochemical processes,” Clay Minerals, vol. 44, no. 1, pp. 135–155, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. F. C. Ugolini and R. A. Dahlgren, “Weathering environments and occurrence of imogolite/allophane in selected Andisols and Spodosols,” Soil Science Society of America Journal, vol. 55, no. 4, pp. 1166–1171, 1991. View at Google Scholar · View at Scopus
  6. I. Basile-Doelsch, R. Amundson, W. E. E. Stone et al., “Mineralogical control of organic carbon dynamics in a volcanic ash soil on La Réunion,” European Journal of Soil Science, vol. 56, no. 6, pp. 689–703, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Arai, D. L. Sparks, and J. A. Davis, “Arsenate adsorption mechanisms at the allophane—Water interface,” Environmental Science and Technology, vol. 39, no. 8, pp. 2537–2544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Denaix, I. Lamy, and J. Y. Bottero, “Structure and affinity towards Cd2+, Cu2+, Pb2+ of synthetic colloidal amorphous aluminosilicates and their precursors,” Colloids and Surfaces A, vol. 158, no. 3, pp. 315–325, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. C. J. Lind and J. D. Hem, Effects of Organic Solutes on Chemical Reactions of Aluminum, Geological Survey Water-Supply Paper 1827-G, United States Government Printing Office, Wash, USA, 1975.
  10. G. G. Lindner, H. Nakazawa, and S. Hayashi, “Hollow nanospheres, allophanes “all-organic ” synthesis and characterization,” Microporous and Mesoporous Materials, vol. 21, no. 4-6, pp. 381–386, 1998. View at Google Scholar · View at Scopus
  11. G. H. Koenderink, S. G. J. M. Kluijtmans, and A. P. Philipse, “On the synthesis of colloidal imogolite fibers,” Journal of Colloid and Interface Science, vol. 216, no. 2, pp. 429–431, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. J. D. Hem and C. J. Lind, “Kaolinite synthesis at 25C,” Science, vol. 184, no. 4142, pp. 1171–1173, 1974. View at Google Scholar · View at Scopus
  13. K. Inoue and P. M. Huang, “Influence of citric acid on the natural formation of imogolite,” Nature, vol. 308, no. 5954, pp. 58–60, 1984. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Inoue and P. M. Huang, “Perturbation of imogolite formation by humic substances,” Soil Science Society of America Journal, vol. 54, no. 5, pp. 1490–1497, 1990. View at Google Scholar · View at Scopus
  15. J. P. Gustafsson, Visual MINTEQ (VMINTEQ) Version 2.53, KTH, Department of Land and Water Resources Engineering, Stockholm, Sweden, 2007.
  16. J. P. Gustafsson, “Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model,” Journal of Colloid and Interface Science, vol. 244, no. 1, pp. 102–112, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. J. D. Ritchie and E. Michael Perdue, “Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter,” Geochimica et Cosmochimica Acta, vol. 67, no. 1, pp. 85–93, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Gérard, J. P. Boudot, and J. Ranger, “Consideration on the occurrence of the Al13 polycation in natural soil solutions and surface waters,” Applied Geochemistry, vol. 16, no. 5, pp. 513–529, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Hiradate and N. U. Yamaguchi, “Chemical species of Al reacting with soil humic acids,” Journal of Inorganic Biochemistry, vol. 97, no. 1, pp. 26–31, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. D. K. Nordstrom and H. M. May, “Aqueous equilibrium data for mononuclear aluminum species,” in The Environmental Chemistry of Aluminum, G. Sposito, Ed., pp. 29–55, CRC Press, Boca Raton, Fla, USA, 1989. View at Google Scholar
  21. G. S. Pokrovski, J. Schott, J. C. Harrichoury, and A. S. Sergeyev, “The stability of aluminum silicate complexes in acidic solutions from 25 to 150C,” Geochimica et Cosmochimica Acta, vol. 60, no. 14, pp. 2495–2501, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. R. M. Smith and A. E. Martell, in NIST Critically Selected Stability Constants of Metal Complexes Database, NIST, Gaithersburg, Md, USA, 7th edition, 2003.
  23. K. A. Thorn, D. W. Folan, and P. MacCarthy, “Characterization of the international humic substances society standard and reference fulvic and humic acids by solution state carbon-13 (13C) and hydrogen-1 (1H) nuclear magnetic resonance spectrometry,” in U.S. Geological Survey, Water-Resources Investigations Report 89-4196, p. 93, 1989. View at Google Scholar
  24. J. P. Pinheiro, A. M. Mota, and M. F. Benedetti, “Effect of aluminum competition on lead and cadmium binding to humic acids at variable ionic strength,” Environmental Science and Technology, vol. 34, no. 24, pp. 5137–5143, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Ganor, T. J. Huston, and L. M. Walter, “Quartz precipitation kinetics at 180°C in NaCl solutions—Implications for the usability of the principle of detailed balancing,” Geochimica et Cosmochimica Acta, vol. 69, no. 8, pp. 2043–2056, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Gout and G. Verdes, “Effect of crystallinity on diaspore and boehmite relative stability,” European Journal of Mineralogy, vol. 5, no. 2, pp. 215–217, 1993. View at Google Scholar · View at Scopus
  27. F. Ohashi, S. I. Wada, M. Suzuki, M. Maeda, and S. Tomura, “Synthetic allophane from high-concentration solutions: nanoengineering of the porous solid,” Clay Minerals, vol. 37, no. 3, pp. 451–456, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. R. L. Parfitt and J. M. Kimble, “Conditions for formation of allophane in soils,” Soil Science Society of America Journal, vol. 53, no. 3, pp. 971–977, 1989. View at Google Scholar · View at Scopus
  29. P. Ildefonse, R. J. Kirkpatrick, B. Montez, G. Calas, A. M. Flank, and P. Lagarde, “27Al MAS NMR and aluminum X-ray absorption near edge structure study of imogolite and allophanes,” Clays & Clay Minerals, vol. 42, no. 3, pp. 276–287, 1994. View at Google Scholar · View at Scopus
  30. F. Ohashi, S. Tomura, K. Akaku, S. Hayashi, and S. I. Wada, “Characterization of synthetic imogolite nanotubes as gas storage,” Journal of Materials Science, vol. 39, no. 5, pp. 1799–1801, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. D. G. Lumsdon and V. C. Farmer, “Solubility characteristics of proto-imogolite sols: how silicic acid can de-toxify aluminium solutions,” European Journal of Soil Science, vol. 46, no. 2, pp. 179–186, 1995. View at Google Scholar · View at Scopus
  32. J. P. Gustafsson, E. Karltun, and P. Bhattacharya, “Allophane and imogolite in Swedish soils,” Research Report TRITA-AMI 3046, Royal Institute of Technology, Stockholm, Sweden, 1998. View at Google Scholar
  33. H. He, T. L. Barr, and J. Klinowski, “ESCA and solid-state NMR studies of allophane,” Clay Minerals, vol. 30, no. 3, pp. 201–209, 1995. View at Google Scholar · View at Scopus
  34. M. Tani, C. Liu, and P. M. Huang, “Atomic force microscopy of synthetic imogolite,” Geoderma, vol. 118, no. 3-4, pp. 209–220, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. P. F. Barron, M. A. Wilson, A. S. Campbell, and R. L. Frost, “Detection of imogolite in soils using solid state 29Si NMR,” Nature, vol. 299, no. 5884, pp. 616–618, 1982. View at Publisher · View at Google Scholar · View at Scopus
  36. B. A. Goodman, J. D. Russell, B. Montez, E. Oldfield, and R. J. Kirkpatrick, “Structural studies of imogolite and allophanes by aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopy,” Physics and Chemistry of Minerals, vol. 12, no. 6, pp. 342–346, 1985. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Hiradate, “Structural changes of allophane during purification procedures as determined by solid-state 27Al and 29Si NMR,” Clays and Clay Minerals, vol. 53, no. 6, pp. 653–658, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. F. J. Doucet, C. Schneider, S. J. Bones et al., “The formation of hydroxyaluminosilicates of geochemical and biological significance,” Geochimica et Cosmochimica Acta, vol. 65, no. 15, pp. 2461–2467, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Strekopytov and C. Exley, “Thermal analyses of aluminium hydroxide and hydroxyaluminosilicates,” Polyhedron, vol. 25, no. 8, pp. 1707–1713, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. C. W. Childs, S. Hayashi, and R. H. Newman, “Five-coordinate aluminum in allophane,” Clays and Clay Minerals, vol. 47, no. 1, pp. 64–69, 1999. View at Google Scholar · View at Scopus
  41. D. Coster, A. L. Blumenfeld, and J. J. Fripiat, “Lewis acid sites and surface aluminum in aluminas and zeolites: a high-resolution NMR study,” Journal of Physical Chemistry, vol. 98, no. 24, pp. 6201–6211, 1994. View at Google Scholar · View at Scopus
  42. S. Hiradate and S. I. Wada, “Weathering process of volcanic glass to allophane determined by 27Al and 29Si solid-state NMR,” Clays and Clay Minerals, vol. 53, no. 4, pp. 401–408, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry, John Wiley & Sons, 1979.
  44. P. D. Taylor, R. Jugdaohsingh, and J. J. Powell, “Soluble silica with high affinity for aluminium under physiological and natural conditions,” Journal of the American Chemical Society, vol. 119, no. 38, pp. 8852–8856, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. S. I. Wada, “Imogolite synthesis at 25C,” Clays & Clay Minerals, vol. 35, no. 5, pp. 379–384, 1987. View at Google Scholar · View at Scopus
  46. F. Thomas, A. Masion, J. Y. Bottero, J. Rouiller, F. Montigny, and F. Genevrier, “Aluminum(III) speciation with hydroxy carboxylic acids. 27Al NMR study,” Environmental Science and Technology, vol. 27, no. 12, pp. 2511–2516, 1993. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Masion, F. Thomas, J. Y. Bottero, D. Tchoubar, and P. Tekely, “Formation of amorphous precipitates from aluminum-organic ligands solutions: macroscopic and molecular study,” Journal of Non-Crystalline Solids, vol. 171, no. 2, pp. 191–200, 1994. View at Google Scholar · View at Scopus
  48. A. Violante and P. Violante, “Influence of pH, concentration, and chelating power of organic-anions on the synthesis of aluminum hydroxides and oxyhydroxides,” Clays Clay Miner, vol. 28, pp. 425–434, 1980. View at Google Scholar
  49. M. R. Jekel, “Interactions of humic acids and aluminium salts in the flocculation process,” Water Research, vol. 20, no. 12, pp. 1535–1542, 1986. View at Google Scholar · View at Scopus
  50. X. Lu, Z. Chen, and X. Yang, “Spectroscopic study of aluminium speciation in removing humic substances by Al coagulation,” Water Research, vol. 33, no. 15, pp. 3271–3280, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Petrović and M. Kaštelan-Macan, “Interaction of humic substances and aluminum formation of insoluble associates,” Food Technology and Biotechnology, vol. 34, no. 2-3, pp. 81–85, 1996. View at Google Scholar
  52. G. S. Pokrovski and J. Schott, “Experimental study of the complexation of silicon and germanium with aqueous organic species: implications for germanium and silicon transport and Ge/Si ratio in natural waters,” Geochimica et Cosmochimica Acta, vol. 62, no. 21-22, pp. 3413–3428, 1998. View at Google Scholar · View at Scopus
  53. S. Shoji, M. Nanzyo, and R. Dahlgren, “Volcanic ash soils. genesis. Properties and utilization,” in Developments in Soil Science, vol. 21, p. 288, Elsevier Press, Amsterdam, Netherlands, 1993. View at Google Scholar
  54. P. Broquen, J. C. Lobartini, F. Candan, and G. Falbo, “Allophane, aluminum, and organic matter accumulation across a bioclimatic sequence of volcanic ash soils of Argentina,” Geoderma, vol. 129, no. 3-4, pp. 167–177, 2005. View at Publisher · View at Google Scholar · View at Scopus