Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2012, Article ID 638984, 7 pages
http://dx.doi.org/10.1155/2012/638984
Research Article

Soil Nutrient Availability, Plant Nutrient Uptake, and Wild Blueberry (Vaccinium angustifolium Ait.) Yield in Response to N-Viro Biosolids and Irrigation Applications

1Engineering Department, Nova Scotia Agricultural College, Truro, NS, Canada B2N 5E3
2Department of Environmental Sciences, GC University Faisalabad, Punjab, Faisalabad, Pakistan

Received 25 March 2011; Revised 8 May 2011; Accepted 23 May 2011

Academic Editor: David C. Weindorf

Copyright © 2012 Aitazaz A. Farooque et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. G. Cogger, A. I. Bary, D. M. Sullivan, and E. A. Myhre, “Biosolids processing effects on first- and second-year available nitrogen,” Soil Science Society of America Journal, vol. 68, no. 1, pp. 162–167, 2004. View at Google Scholar · View at Scopus
  2. G. A. O'Connor, D. Sarkar, S. R. Brinton, H. A. Elliott, and F. G. Martin, “Phytoavailability of biosolids phosphorus,” Journal of Environmental Quality, vol. 33, no. 2, pp. 703–712, 2004. View at Google Scholar · View at Scopus
  3. A. R. Sharma and B. N. Mittra, “Direct and residual effects of organic materials and phosphorus fertilizer in rice based cropping system,” Indian Journal of Agronomy, vol. 36, pp. 299–303, 1991. View at Google Scholar
  4. M. M. Abou El-Magd, M. A. Hoda, and Z. F. Fawzy, “Relationships, growth, yield of broccoli with increasing N, P or K ratio in a mixture of NPK fertilizers,” Annals of Agricultural Science Moshtohor, vol. 43, pp. 791–805, 2005. View at Google Scholar
  5. M. A. Khan, W. Mingzhi, B. K. Lim, and J. Y. Lee, “Utilization of waste paper for an environmentally friendly slow-release fertilizer,” Journal of Wood Science, vol. 54, no. 2, pp. 158–161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. O. T. Ayoola and E. A. Makinde, “Performance of green maize and soil nutrient changes with fortified cow dung,” African Journal of Plant Science, vol. 2, pp. 19–22, 2008. View at Google Scholar
  7. N. Q. Arancon, C. A. Edwards, P. Bierman, J. D. Metzger, and C. Lucht, “Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yield of peppers in the field,” Pedobiologia, vol. 49, no. 4, pp. 297–306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. K. A. Barbarick and J. A. Ippolito, “Nutrient assessment of a dryland wheat agroecosystem after 12 years of biosolids applications,” Agronomy Journal, vol. 99, no. 3, pp. 715–722, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. E. Yarborough, Wild Blueberry, University of Maine Cooperative Extension, Orono, Me, USA, 2009.
  10. L. J. Eaton, Nitrogen cycling in lowbush blueberry stands, Ph.D. thesis, Dalhousie University, Nova Scotia, Canada, 1988.
  11. D. C. Percival and J. P. Prive, “Nitrogen formulation influences plant nutrition and yield components of lowbush blueberry (Vaccinium angustifolium Ait.),” Acta Horticulturae, vol. 574, pp. 347–353, 2002. View at Google Scholar
  12. R. M. Seymour, G. Starr, and D. E. Yarborough, “Lowbush blueberry (Vaccinium angustifolium) with irrigated and rain-fed conditions,” Small Fruits Review, vol. 3, no. 1-2, pp. 45–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. D. D. Tarkalson, J. O. Payero, S. M. Ensley, and C. A. Shapiro, “Nitrate accumulation and movement under deficit irrigation in soil receiving cattle manure and commercial fertilizer,” Agricultural Water Management, vol. 85, no. 1-2, pp. 201–210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. K. T. Webb, R. L. Thompson, G. J. Beke, and J. L. Nowland, Soils of Colchester County, Nova Scotia, Report No. 19 Nova Scotia Soil Survey, Research Branch, Agriculture, Ottawa, Canada, 1991.
  15. J. C. Yeomans and J. M. Bremner, “Carbon and nitrogen analysis of soils by automated combustion techniques,” Communications in Soil Science and Plant Analysis, vol. 22, no. 9-10, pp. 843–850, 1991. View at Google Scholar · View at Scopus
  16. A. Mehlich, “Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant,” Communications in Soil Science and Plant Analysis, vol. 15, no. 12, pp. 1409–1416, 1984. View at Google Scholar · View at Scopus
  17. J. B. Jones and V. W. Case, “Sampling, handling and analyzing plant tissue samples,” in Soil Testing and Plant Analysis, R. L. Westerman, Ed., vol. 5 of SSSA Book, SSSA, Madison, Wis, USA, 1990. View at Google Scholar
  18. G. W. Gee and D. Or, “Particle-size analysis,” in Methods of Soil Analysis Part 4, J. H. Dane and G. C. Topp, Eds., vol. 5 of SSSA Book, SSSA, Madison, Wis, USA, 2002. View at Google Scholar
  19. R. B. Grossman and T. G. Reinsch, “Bulk density and linear extensibility,” in Methods of Soil Analysis Part 4, J. H. Dane and G. C. Topp, Eds., vol. 5 of SSSA Book, SSSA, Madison, Wis, USA, 2002. View at Google Scholar
  20. L. Eaton, K. Sanderson, and S. Fillmore, “Nova Scotia wild blueberry soil and leaf nutrient ranges,” International Journal of Fruit Science, vol. 9, no. 1, pp. 46–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. Analytical Software, User's Manual: Statistix 8, Analytical Software, Tallahassee, Fla, USA, 2003.
  22. G. L. Kuepper and S. Diver, “Blueberries: organic production—horticulture production guide,” 2010, http://attra.ncat.org/attra-pub/PDF/blueberry.pdf. View at Google Scholar
  23. J. R. Ehleringer and T. E. Dawson, “Water uptake by plants: perspectives from stable isotope composition,” Plant, Cell and Environment, vol. 15, no. 9, pp. 1073–1082, 1992. View at Google Scholar · View at Scopus
  24. J. W. Paul and E. G. Beauchamp, “Nitrogen availability for corn in soils amended with urea, cattle slurry, and solid and composed manure,” Canadian Journal of Soil Science, vol. 73, pp. 253–266, 1993. View at Google Scholar
  25. J. J. Cho, R. S. Shimabuku, H. R. Valenzuel, R. Uchida, and R. F. Mau, “The effect of solarization, metam sodium, biological soil treatment and cover crop amendment on pink root incidence and yield of sweet onion in Maui, Hawaii,” Proceedings of Florida State Horticulture Society, vol. 113, pp. 218–221, 2000. View at Google Scholar
  26. M. C. Villar, V. Petrikova, M. Díaz-Raviña, and T. Carballas, “Recycling of organic wastes in burnt soils: combined application of poultry manure and plant cultivation,” Waste Management, vol. 24, no. 4, pp. 365–370, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. S. L. Lipoth and J. J. Schoenau, “Copper, zinc, and cadmium accumulation in two prairie soils and crops as influenced by repeated applications of manure,” Journal of Plant Nutrition and Soil Science, vol. 170, no. 3, pp. 378–386, 2007. View at Publisher · View at Google Scholar