Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2012, Article ID 679210, 8 pages
http://dx.doi.org/10.1155/2012/679210
Research Article

Laboratory Experiments on the Effect of Microtopography on Soil-Water Movement: Spatial Variability in Wetting Front Movement

Department of Civil Engineering, North Dakota State University, Dept 2470, P.O. Box 6050, Fargo, ND 58108-6050, USA

Received 6 September 2011; Accepted 2 December 2011

Academic Editor: Alessandro Piccolo

Copyright © 2012 Leif Sande and Xuefeng Chu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Tricker, “Spatial and temporal patterns of infiltration,” Journal of Hydrology, vol. 49, no. 3-4, pp. 261–277, 1981. View at Google Scholar · View at Scopus
  2. M. Sullivan, J. J. Warwick, and S. W. Tyler, “Quantifying and delineating spatial variations of surface infiltration in a small watershed,” Journal of Hydrology, vol. 181, no. 1–4, pp. 149–168, 1996. View at Google Scholar · View at Scopus
  3. B. E. Haggard, P. A. Moore Jr., and K. R. Brye, “Effect of slope on runoff from a small variable slope box-plot,” Journal of Environmental Hydrology, vol. 13, no. 25, pp. 1–8, 2005. View at Google Scholar · View at Scopus
  4. Y. Le Bissonnais, B. Renaux, and H. Delouche, “Interactions between soil properties and moisture content in crust formation, runoff and interrill erosion from tilled loess soils,” Catena, vol. 25, no. 1–4, pp. 33–46, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. M. K. Magunda, W. E. Larson, D. R. Linden, and E. A. Nater, “Changes in microrelief and their effects on infiltration and erosion during simulated rainfall,” Soil Technology, vol. 10, no. 1, pp. 57–67, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Wei, B. Zhang, and M. Wang, “Effects of antecedent soil moisture on runoff and soil erosion in alley cropping systems,” Agricultural Water Management, vol. 94, no. 1–3, pp. 54–62, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Govers, I. Takken, and K. Helming, “Soil roughness and overland flow,” Agronomie, vol. 20, no. 2, pp. 131–146, 2000. View at Google Scholar · View at Scopus
  8. R. E. Burwell and W. E. Larson, “Infiltration as influenced by tillage-induced random roughness and pore space,” Proceedings of the Soil Science Society of America, vol. 33, pp. 449–452, 1969. View at Google Scholar
  9. K. Helming, M. J. M. Römkens, and S. N. Prasad, “Surface roughness related processes of runoff and soil loss: a flume study,” Soil Science Society of America Journal, vol. 62, no. 1, pp. 243–250, 1998. View at Google Scholar · View at Scopus
  10. J. A. Gómez and M. A. Nearing, “Runoff and sediment losses from rough and smooth soil surfaces in a laboratory experiment,” Catena, vol. 59, no. 3, pp. 253–266, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Dunne, W. Zhang, and B. F. Aubry, “Effects of rainfall, vegetation, and microtopography on infiltration and runoff,” Water Resources Research, vol. 27, no. 9, pp. 2271–2285, 1991. View at Publisher · View at Google Scholar · View at Scopus
  12. J. K. Mitchell and B. A. Jones, “Micro-relief surface depression storage: analysis of models to describe the depth-storage function,” Water Resources Bulletin, vol. 12, no. 6, pp. 1205–1222, 1976. View at Google Scholar · View at Scopus
  13. C. A. Onstad, “Depressional storage on tilled soil surfaces,” Transactions of the American Society of Agricultural Engineers, vol. 27, no. 3, pp. 729–732, 1984. View at Google Scholar · View at Scopus
  14. F. Darboux, P. Davy, C. Gascuel-Odoux, and C. Huang, “Evolution of soil surface roughness and flowpath connectivity in overland flow experiments,” Catena, vol. 46, no. 2-3, pp. 125–139, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. D. M. Fox, R. B. Bryan, and A. G. Price, “The influence of slope angle on final infiltration rate for interrill, conditions,” Geoderma, vol. 80, no. 1-2, pp. 181–194, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. D. M. Fox, Y. Le Bissonnais, and A. Bruand, “The effect of ponding depth on infiltration in a crusted surface depression,” Catena, vol. 32, no. 2, pp. 87–100, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. D. M. Fox, Y. Le Bissonnais, and P. Quétin, “The implications of spatial variability in surface seal hydraulic resistance for infiltration in a mound and depression microtopography,” Catena, vol. 32, no. 2, pp. 101–114, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Assouline and M. Ben-Hur, “Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing,” Catena, vol. 66, no. 3, pp. 211–220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Assouline, “Rainfall-induced soil surface sealing: a critical review of observations, conceptual models, and solutions,” Vadose Zone Journal, vol. 3, no. 2, pp. 570–591, 2004. View at Google Scholar
  20. D. Hillel, Environmental Soil Physics, Academic Press, San Diego, Calif, USA, 1998.
  21. L. Sande, X. Chu, and T. DeSutter, “A new method for replicating complex microtopographic surfaces in laboratory soil box experiments,” Applied Engineering in Agriculture, vol. 27, no. 4, pp. 615–620, 2011. View at Google Scholar
  22. C.-H. Huang and J. M. Bradford, “Potable laser scanner for measuring soil surface roughness,” Soil Science Society of America Journal, vol. 54, no. 5, pp. 1402–1406, 1990. View at Google Scholar · View at Scopus
  23. F. Darboux and C. H. Huang, “An instantaneous-profile laser scanner to measure soil surface microtopography,” Soil Science Society of America Journal, vol. 67, no. 1, pp. 92–99, 2003. View at Google Scholar · View at Scopus
  24. L. D. Meyer and W. C. Harmon, “Multiple-intensity rainfall simulator for erosion research on row sideslopes,” Transactions American Society of Agricultural Engineers, vol. 22, no. 1, pp. 100–103, 1979. View at Google Scholar · View at Scopus
  25. L. D. Meyer, “Rainfall simulators for soil erosion research,” in Soil Erosion Research Methods, R. Lal, Ed., CRC Press, 2nd edition, 1994. View at Google Scholar