Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2014, Article ID 468751, 15 pages
http://dx.doi.org/10.1155/2014/468751
Research Article

Soil Erosion Prediction Using Morgan-Morgan-Finney Model in a GIS Environment in Northern Ethiopia Catchment

1College of Agriculture, Aksum University, P.O. Box 287, Aksum, Ethiopia
2Centre for Development Research, University of Bonn, Walter-Flex-Street 3, 53113 Bonn, Germany
3International Centre for Tropical Agriculture (CIAT), Chitedze Agricultural Research Station, P.O. Box 158, Lilongwe, Malawi

Received 7 February 2014; Accepted 14 March 2014; Published 22 April 2014

Academic Editor: Yong Sik Ok

Copyright © 2014 Gebreyesus Brhane Tesfahunegn et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Scherr, “Soil degradation: a threat to developing-country food security by 2020?” Food, Agriculture, and Environment Discussion Paper 27, International Food Policy Research Institute, Washington, DC, USA, 1999. View at Google Scholar
  2. R. Lal, “Soil degradation by erosion,” Land Degradation and Development, vol. 12, no. 6, pp. 519–539, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. R. P. C. Morgan, Soil Erosion and Conservation, Blackwell, Malden, Mass, USA, 3rd edition, 2005.
  4. M. A. Zoebisch and E. DePauw, “Degradation and food security on a global scale,” in Encyclopedia of Soil Science, R. Lal, Ed., pp. 281–286, Marcel Dekker, 2002. View at Google Scholar
  5. R. Lal, “Soil quality and sustainability,” in Methods for Assessment of Soil Degradation, R. Lal, W. H. Blum, C. Valentine, and B. A. Stewart, Eds., pp. 17–30, CRC Press, Boca Raton, Fla, USA, 1998. View at Google Scholar
  6. J. Ananda and G. Herath, “Soil erosion in developing countries: a socio-economic appraisal,” Journal of Environmental Management, vol. 68, no. 4, pp. 343–353, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Tamene, Reservoir siltation in the drylands of northern Ethiopia: causes, source areas and management options [Ph.D. thesis], University of Bonn, Bonn, Germany, 2005.
  8. J. Nyssen, Erosion processes and soil conservation in a tropical mountain catchment under threat of anthropogenic desertification—a case study from Northern Ethiopia [Ph.D. thesis], Katholieke University, Leuven, Belgium, 2001.
  9. G. Tekeste and D. S. Paul, “Soil and water conservation in Tigray, Ethiopia,” Report of a Consultancy Visit to Tigray, University of Wageningen, Wageningen, The Netherlands, 1989. View at Google Scholar
  10. FAO, “Ethiopian highland reclamation study: Ethiopia,” Final Report, FAO, Rome, Italy, 1986. View at Google Scholar
  11. H. Hurni, “Erosion—productivity—conservation systems in Ethiopia,” in Soil Conservation and Productivity, Proceeding of the 4th International Conference on Soil Conservation, I. P. Sentis, Ed., pp. 654–674, Maracay, Venezuela, November 1985.
  12. G. B. Tesfahunegn, Soil erosion modeling and soil quality evaluation for catchment management strategies in northern Ethiopia [Ph.D. thesis], University of Bonn, Bonn, Germany, 2011.
  13. H. Pohlmann, “Geostatistical modelling of environmental data,” Catena, vol. 20, no. 1-2, pp. 191–198, 1993. View at Google Scholar · View at Scopus
  14. G. B. Tesfahunegn, L. Tamene, and P. L. G. Vlek, “Catchment-scale spatial variability of soil properties and implications on site-specific soil management in northern Ethiopia,” Soil and Tillage Research, vol. 117, pp. 124–139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Sharad, M. V. Ravi Kumar, L. Venkataratnam, and T. Mel lerwara Rao, “Watershed prioritization for soil conservation- a GIS approach,” GeoCarto International, vol. 1, no. 2, pp. 27–34, 1993. View at Google Scholar
  16. P. G. Sanware, C. P. Singb, and R. L. Karale, “Remote sensing application for prioritization of subwatersheds using sediment yield and runoff indices in the catchment of Marani barrage (Sahibi),” UNDP/ FAO Project 13, Remote Sensing Center, AIS LUS, Government of India, New Delhi, India, 1998. View at Google Scholar
  17. D. K. Das, K. S. S. Sharma, and N. Kalra, “Education and training in remote sensing and GIS for sustainable agricultural development,” in Proceeding of the 15th Asian Conference on Remote Sensing, pp. 1–6, Banagalore, India, 1994.
  18. E. Özgöz, “Long term conventional tillage effect on spatial variability of some soil physical properties,” Journal of Sustainable Agriculture, vol. 33, no. 2, pp. 142–160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Webster, “Quantitative spatial analysis of soil in the field,” in Advance In Soil Science, B. A. Stewart, Ed., vol. 3, pp. 1–70, Springer, New York, NY, USA, 1985. View at Google Scholar
  20. R. Webster and M. A. Oliver, Statistical Methods in Soil and Land Resource Survey, Oxford University Press, Oxford, UK, 1990.
  21. C. A. Cambardella, T. B. Moorman, J. M. Novak et al., “Field-scale variability of soil properties in central Iowa soils,” Soil Science Society of America Journal, vol. 58, no. 5, pp. 1501–1511, 1994. View at Google Scholar · View at Scopus
  22. W. H. Wischmeier and D. D. Smith, Predicting Rainfall Erosion Losses: A Guide to Conservation Planning, vol. 537, US Department of Agriculture, Washington, DC, USA, 1978.
  23. R. P. C. Morgan, D. D. V. Morgan, and H. J. Finney, “A predictive model for the assessment of soil erosion risk,” Journal of Agricultural Engineering Research, vol. 30, pp. 245–253, 1984. View at Google Scholar · View at Scopus
  24. D. C. Flanagan and M. A. Nearing, “USDA-Water Erosion Prediction Project (WEPP),” Tech. Rep. 10, National Soil Erosion Research Laboratory, USDA-ARS-MWA, West Lafayette, Ind, USA, 1995. View at Google Scholar
  25. J. G. Arnold, R. Srinivasan, R. S. Muttiah, and J. R. Williams, “Large area hydrologic modeling and assessment part I: model development,” Journal of the American Water Resources Association, vol. 34, no. 1, pp. 73–89, 1998. View at Google Scholar · View at Scopus
  26. R. P. C. Morgan, J. N. Quinton, R. E. Smith et al., “The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments,” Earth Surface Processes and Landforms, vol. 23, no. 6, pp. 527–544, 1998. View at Google Scholar
  27. R. L. Bingner and F. D. Theurer, “AnnAGNPS: estimating sediment yield by particle size for sheet & rill erosion,” in Proceedings of Sedimentation: Monitoring, Modeling, and Managing, 7th Federal Interagency Sedimentation Conference, vol. 1, pp. 1–7, Reno, Nev, USA, March 2001.
  28. D. M. Fox and R. B. Bryan, “The relationship of soil loss by interrill erosion to slope gradient,” Catena, vol. 38, no. 3, pp. 211–222, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. P. I. A. Kinnell, “AGNPS-UM: applying the USLE-M within the agricultural non point source pollution model,” Environmental Modelling and Software, vol. 15, no. 3, pp. 331–341, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. K. J. Lim, M. Sagong, B. A. Engel, Z. Tang, J. Choi, and K.-S. Kim, “GIS-based sediment assessment tool,” Catena, vol. 64, no. 1, pp. 61–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. G. B. Tesfahunegn, P. L. G. Vlek, and L. Tamene, “Management strategies for reducing soil degradation through modeling in a GIS environment in northern Ethiopia catchment,” Nutrient Cycling in Agroecosystems, vol. 92, no. 3, pp. 255–272, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Tamene, S. J. Park, R. Dikau, and P. L. G. Vlek, “Analysis of factors determining sediment yield variability in the highlands of northern Ethiopia,” Geomorphology, vol. 76, no. 1-2, pp. 76–91, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. EMA, Ethiopian Mapping Agency, “Ethiopia 1:50000 topographic maps: Aksum Sheet,” Tech. Rep., Ethiopian Mapping Agency, Addis Ababa, Ethiopia, 1997. View at Google Scholar
  34. FAO, Food and Agriculture Organization of the United Nations, “The Soil and Terrain Database for Northeastern Africa,” FAO, Rome, Italy, 1998.
  35. T. M. Dinka, Application of the Morgan, Morgan Finney Model in Adulala Mariyam Watershed, Ethiopia: GIS based erosion risk assessment and testing of alternative land management options [M.S. thesis], Wageningen University, Wageningen, The Netherlands, 2007.
  36. S. J. Birrell, K. A. Sudduth, and N. R. Kitchen, “Nutrient mapping implications of short-range variability,” in Proceedings of the 3rd International Conference on Precision Agriculture, P. C. Robert, R. H. Rust, and W. E. Larson, Eds., pp. 206–216, America Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wis, USA, 1996.
  37. D. W. Franzen, A. D. Halvorson, J. Krupinsky, V. L. Hofman, and L. J. Cihacek, “Directed sampling using topography as a logical basis,” in Proceedings of the 4th International Conference on Precision Agriculture, P. C. Robert, R. H. Rust, and W. E. Larson, Eds., pp. 1559–1568, America Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wis, USA, 1998.
  38. G. B. Tesfahunegn, L. Tamene, and P. L. G. Vlek, “A participatory soil quality assessment in Northern Ethiopia's Mai-Negus catchment,” Catena, vol. 86, no. 1, pp. 1–13, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. G. W. Gee and J. W. Bauder, “Particle-size analysis,” in Methods of Soil Analysis, Part 1, A. Klute, Ed., pp. 383–411, America Society of Agronomy, Soil Science Society of America, Madison, Wis, USA, 2nd edition, 1986. View at Google Scholar
  40. G. R. Blake and K. H. Hartge, “Bulk density,” in Methods of Soil Analysis, Part 1, A. Klute, Ed., vol. 9 of Agronomy Monograph, pp. 363–375, America Society of Agronomy, Madison, Wis, USA, 2nd edition, 1986. View at Google Scholar
  41. T. C. Baruah and H. P. Barthakur, A Text Book of Soil Analysis, Vikas, New Delhi, India, 1999.
  42. A. Utset, T. López, and M. Díaz, “A comparison of soil maps, kriging and a combined method for spatially predicting bulk density and field capacity of ferralsols in the Havana-Matanzas Plain,” Geoderma, vol. 96, no. 3, pp. 199–213, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. N. A. C. Cressie, Statistics for Spatial Data, Revised Edition, John Wiley & Sons, New York, NY, USA, 1993.
  44. J. Triantafilis, I. O. A. Odeh, and A. B. McBratney, “Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton,” Soil Science Society of America Journal, vol. 65, no. 3, pp. 869–878, 2001. View at Google Scholar · View at Scopus
  45. A. D. Chekol, Modeling of hydrology and soil erosion of upper Awash river basin, Ethiopia [Ph.D. thesis], University of Bonn, Bonn, Germany, 2006.
  46. P. J. J. Desmet and G. Govers, “GIS-based simulation of erosion and deposition patterns in an agricultural landscape: a comparison of model results with soil map information,” Catena, vol. 25, no. 1–4, pp. 389–401, 1995. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Mitasova, L. Mitas, W. M. Brown, and D. M. Johnston, GIS Tools for Erosion/Deposition Modelling and Multidimensional Visualization, Geographic Modelling and Systems Laboratory, University of Illinois at Urbana-Champaign, Urbana, Ill, USA, 1997.
  48. K. M. Turnage, S. Y. Lee, J. E. Foss, K. H. Kim, and I. L. Larsen, “Comparison of soil erosion and deposition rates using radiocesium, RUSLE, and buried soils in dolines in East Tennessee,” Environmental Geology, vol. 29, no. 1-2, pp. 1–10, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. N. C. Brady and R. R. Weil, Eds., The Nature and Properties of Soils, Prentice Hall, Upper Saddle River, NJ, USA, 13th edition, 2002.
  50. J. W. Doran, “Soil health and global sustainability: translating science into practice,” Agriculture, Ecosystems & Environment, vol. 88, no. 2, pp. 119–127, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. H. A. Ahmed, E. S. Gerald, and H. H. Richard, “Soil bulk density and water infiltration as affected by grazing systems,” Journal of Range Management, vol. 40, no. 4, pp. 307–309, 1987. View at Google Scholar
  52. P. Behera, K. H. V. Durga Rao, and K. K. Das, “Soil erosion modeling using MMF model—a remote sensing and GIS perspective,” Journal of Indian Society of Remote Sensing, vol. 33, no. 1, pp. 165–176, 2005. View at Google Scholar
  53. O. T. Ande, Y. Alaga, and G. A. Oluwatosin, “Soil erosion prediction using MMF model on highly dissected hilly terrain of Ekiti environs in southwestern Nigeria,” International Journal of Physical Sciences, vol. 4, no. 2, pp. 53–57, 2009. View at Google Scholar · View at Scopus
  54. V. Garg and V. Jothiprakash, “Sediment yield assessment of a large basin using PSIAC approach in GIS environment,” Water Resources Management, vol. 26, no. 3, pp. 799–840, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. Q. B. Le, R. Seidl, and R. W. Scholz, “Feedback loops and types of adaptation in the modelling of land-use decisions in an agent-based simulation,” Environmental Modelling and Software, vol. 27-28, pp. 83–96, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. L. B. Asmamaw, A. A. Mohammed, and T. D. Lulseged, “Land use/cover dynamics and their effects in the Gerado catchment, Northeastern Ethiopia,” International Journal of Environmental Studies, vol. 68, no. 6, pp. 883–900, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Kaini, K. Artita, and J. W. Nicklow, “Optimizing structural best management practices using SWAT and genetic algorithm to improve water quality goals,” Water Resources Management, vol. 26, no. 7, pp. 1827–1845, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Sun, W. Lu, O. Yang, J. D. Martín, and D. Li, “Ecological compensation estimation of soil and water conservation based on cost-benefit analysis,” Water Resources Management, vol. 27, no. 8, pp. 2709–2727, 2013. View at Google Scholar
  59. G. B. Tesfahunegn, P. L. G. Vlek, and L. Tamene, “Application of SWAT model to assess erosion hotspot for sub-catchment management at Mai-Negus catchment in northern Ethiopia,” East African Journal of Science and Technology, vol. 2, no. 2, pp. 97–123, 2013. View at Google Scholar
  60. A. Munodawafa, “The effect of rainfall characteristics and tillage on sheet erosion and maize grain yield in semiarid conditions and granitic sandy soils of Zimbabwe,” Applied and Environmental Soil Science, vol. 2012, Article ID 243815, 8 pages, 2012. View at Publisher · View at Google Scholar
  61. H. Hurni, “Soil formation rates in Ethiopia,” Working Paper 2, Ethiopian Highlands Reclamation Studies, Addis Ababa, Ethiopia, 1983. View at Google Scholar
  62. M. J. Machado, A. Perez-Gonzalez, and G. Benito, “Assessment of soil erosion using a predictive model,” in Rehabilitation of DegradIng and Degraded Areas of Tigray, Northern Ethiopia, E. Feoli, Ed., pp. 237–248, Department of Biology, University of Trieste, Trieste, Italy, 1996. View at Google Scholar