Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2015 (2015), Article ID 720167, 8 pages
http://dx.doi.org/10.1155/2015/720167
Research Article

Effectiveness of Extractants for Bioavailable Phosphorus in Tropical Soils Amended with Sewage Sludge

1Department of Soil Science, University of São Paulo (ESALQ/USP), P.O. Box 9, 13418-900 Piracicaba, SP, Brazil
2Department of Technology, São Paulo State University, 14884-900 Jaboticabal, SP, Brazil
3São Paulo State Agribusiness Technology Agency, 13400-970 Piracicaba, SP, Brazil
4Department of Soil Science, ESALQ/USP, Brazil

Received 15 August 2014; Revised 17 October 2014; Accepted 22 October 2014

Academic Editor: Rodrigo Studart Corrêa

Copyright © 2015 Roberta Corrêa Nogueirol et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Gaskin, R. B. Brobst, W. P. Miller, and E. W. Tollner, “Long-term biosolids application effects on metal concentrations in soil and bermudagrass forage,” Journal of Environmental Quality, vol. 32, no. 1, pp. 146–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. V. D. Zheljazkov and P. R. Warman, “Phytoavailability and fractionation of copper, manganese, and zinc in soil following application of two composts to four crops,” Environmental Pollution, vol. 131, no. 2, pp. 187–195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. de Las Heras, P. Mañas, and J. Labrador, “Effects of several applications of digested sewage sludge on soil and plants,” Journal of Environmental Science and Health, vol. 40, no. 2, pp. 437–451, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Eghball and J. F. Power, “Phosphorus- and nitrogen-based manure and compost applications: corn production and soil phosphorus,” Soil Science Society of America Journal, vol. 63, no. 4, pp. 895–901, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. Environmental National Council—Conama, “Resolution no. 420 of December 28, 2009. Provides criteria and guiding values of soil quality regarding presence of chemicals and establishes guidelines for environmental management of areas contaminated by these substances resulting from human activities,” October 2011.
  6. R. O. Maguire, J. T. Sims, and F. J. Coale, “Phosphorus fractionation in biosolids-amended soils: Relationship to soluble and desorbable phosphorus,” Soil Science Society of America Journal, vol. 64, pp. 2018–2024, 2000. View at Google Scholar
  7. G. A. O'Connor, D. Sarkar, S. R. Brinton, H. A. Elliott, and F. G. Martin, “Phytoavailability of biosolids phosphorus,” Journal of Environmental Quality, vol. 33, no. 2, pp. 703–712, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Ippolito, K. A. Barbarick, and K. L. Norvell, “Biosolids impact soil phosphorus accountability, fractionation, and potential environmental risk,” Journal of Environmental Quality, vol. 36, no. 3, pp. 764–772, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. C. Edmeades, A. K. Metherell, J. E. Waller, A. H. C. Roberts, and J. D. Morton, “Defining the relationships between pasture production and soil P and the development of a dynamic P model for New Zealand pastures: a review of recent developments,” New Zealand Journal of Agricultural Research, vol. 49, no. 2, pp. 207–222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Bayer, L. Martin-Neto, J. Mielniczuk, S. D. C. Saab, D. M. P. Milori, and V. S. Bagnato, “Tillage and cropping system effects on soil humic acid characteristics as determined by electron spin resonance and fluorescence spectroscopies,” Geoderma, vol. 105, no. 1-2, pp. 81–92, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. E. I. Bertoncini, V. D'Orazio, N. Senesi, and M. E. Mattiazzo, “Effects of sewage sludge amendment on the properties of two Brazilian oxisols and their humic acids,” Bioresource Technology, vol. 99, no. 11, pp. 4972–4979, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. M. Condron and H. Tiessen, “Interactions of organic phosphorus in terrestrial ecosystems,” in Organic Phosphorus in the Environment, B. L. Turner, E. Frossard, and D. S. Baldwin, Eds., pp. 295–307, CABI, Oxford, UK, 2005. View at Google Scholar
  13. R. W. McDowell, L. M. Condron, and I. Stewart, “An examination of potential extraction methods to assess plant-available organic phosphorus in soil,” Biology and Fertility of Soils, vol. 44, no. 5, pp. 707–715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. B. van Raij, H. Cantarella, J. A. Quaggio, and A. M. C. Furlani, Lime and Fertilizer Recommendations for the State of São Paulo, Campinas Instituto Agronômico, 1996, (Portuguese).
  15. C. M. Johnson and A. Ulrich, Analytical Methods for Use in Plants Analyses, University of California, Los Angeles, Calif, USA, 1959.
  16. B. van Raij, J. A. Quaggio, and N. M. Da Silva, “Extraction of phosphorus, potassium, calcium, and magnesium from soils by an ion-exchange resin procedure,” Communications in Soil Science & Plant Analysis, vol. 17, no. 5, pp. 547–566, 1986. View at Publisher · View at Google Scholar · View at Scopus
  17. W. L. Nelson, A. Mehlich, and E. Winters, “The development, evaluation and use of soil test for phosphorus availability,” Agronomy, vol. 4, pp. 153–188, 1953. View at Google Scholar
  18. R. A. Catani and H. Gargantini, “Extraction of soil phosphorus by the Neubauer and chemical methods,” Bragantia, vol. 13, pp. 55–62, 1954 (Portuguese). View at Google Scholar
  19. Sas Institute, SAS: User's Guide: Statistics, Sas Institute, Cary, NC, USA, 6th edition, 2002.
  20. L. R. F. Alleoni, S. R. Brinton, and G. A. O'Connor, “Runoff and leachate losses of phosphorus in a sandy spodosol amended with biosolids,” Journal of Environmental Quality, vol. 37, no. 1, pp. 259–265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. He, C. W. Honeycutt, B. J. Cade-Menun, Z. N. Senwo, and I. A. Tazisong, “Phosphorus in poultry litter and soil: enzymatic and nuclear magnetic resonance characterization,” Soil Science Society of America Journal, vol. 72, no. 5, pp. 1425–1433, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. P. E. Trani, R. Hiroce, and O. C. Bataglia, Foliar Analysis: Sampling and Interpretation, Fundação Cargill, Campinas, Brazil, 1983, (Portuguese).
  23. R. R. Sattell and R. A. Morris, “Phosphorus fractions and availability in Sri Lankan Alfisols,” Soil Science Society of America Journal, vol. 56, no. 5, pp. 1510–1515, 1992. View at Publisher · View at Google Scholar · View at Scopus
  24. J. L. Schroder, H. Zhang, D. Zhou et al., “The effect of long-term annual application of biosolids on soil properties, phosphorus, and metals,” Soil Science Society of America Journal, vol. 72, no. 1, pp. 73–82, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. R. O. Maguire, J. T. Sims, S. K. Dentel, F. J. Coale, and J. T. Mah, “Relationships between biosolids treatment process and soil phosphorus availability,” Journal of Environmental Quality, vol. 30, no. 3, pp. 1023–1033, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. E. J. Kamprath and M. E. Watson, “Conventional soil and tissue tests for assessing the phosphorus status of soils,” in The Role of Phosphorus in Agriculture, F. E. Khasawaneh, E. C. Sample, and E. J. Kamprath, Eds., pp. 433–469, Soil Science Society of America, Madison, Wis, USA, 1980. View at Google Scholar
  27. A. N. Sharpley, J. T. Sims, and G. M. Pierzynski, “Innovative soil phosphorus availability indices: assessing inorganic phosphorus,” in Soil Testing: Prospects for Improving Nutrient Recommendations, J. L. Havlin and S. Jacobsen, Eds., SSSA Special Publication no. 40, pp. 115–142, SSSA-ASA, Madison, Wis, USA, 1994. View at Google Scholar
  28. X.-L. Huang, Y. Chen, and M. Shenker, “Chemical fractionation of phosphorus in stabilized biosolids,” Journal of Environmental Quality, vol. 37, no. 5, pp. 1949–1958, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Frossard, S. Sinaj, and P. Dufour, “Phosphorus in urban sewage sludges as assessed by isotopic exchange,” Soil Science Society of America Journal, vol. 60, no. 1, pp. 179–182, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Qian and J. J. Schoenau, “Fractionation of P in soil as influenced by a single addition of liquid swine manure,” Canadian Journal of Soil Science, vol. 80, no. 4, pp. 561–566, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. R. A. Viégas, R. F. Novais, and F. Schulthais, “Availability of a soluble phosphorus source applied to soil samples with different acidity levels,” Revista Brasileira de Ciencia do Solo, vol. 34, no. 4, pp. 1126–1136, 2010. View at Google Scholar · View at Scopus
  32. R. F. Novais and E. J. Kamprath, “Phosphorus recovered in three chemical extractants as a function of phosphorus treatment and capacity factor,” Revista Brasileira de Ciência do Solo, vol. 3, pp. 41–46, 1979 (Portuguese). View at Google Scholar
  33. N. V. Hue, “Sewage sludge,” in Soil Amendments and Environmental Quality, J. E. Rechcigl, Ed., pp. 199–168, CRC Press, Boca Raton, Fla, USA, 1995. View at Google Scholar
  34. J. Paz-Ferreiro, E. V. Vázquez, and C. A. de Abreu, “Phosphorus determination after Mehlich 3 extraction and anion exchange resin in an agricultural soil of Northwestern Spain,” Communications in Soil Science and Plant Analysis, vol. 43, no. 1-2, pp. 102–111, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. P. S. Kidd, M. J. Domínguez-Rodríguez, J. Díez, and C. Monterroso, “Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge,” Chemosphere, vol. 66, no. 8, pp. 1458–1467, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Mantovi, G. Baldoni, and G. Toderi, “Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop,” Water Research, vol. 39, no. 2-3, pp. 289–296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. A. L. Shober and J. T. Sims, “Phosphorus restrictions for land application of biosolids,” Journal of Environmental Quality, vol. 32, no. 6, pp. 1955–1964, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Citak and S. Sonmez, “Influence of organic and conventional growing conditions on the nutrient contents of white head cabbage (Brassica oleracea var. capitata) during two successive seasons,” Journal of Agricultural and Food Chemistry, vol. 58, no. 3, pp. 1788–1793, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Korboulewsky, S. Dupouyet, and G. Bonin, “Environmental risks of applying sewage sludge compost to vineyards: carbon, heavy metals, nitrogen, and phosphorus accumulation,” Journal of Environmental Quality, vol. 31, no. 5, pp. 1522–1527, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. C. J. Penn and J. T. Sims, “Phosphorus forms in biosolids-amended soils and losses in runoff: effects of wastewater treatment process,” Journal of Environmental Quality, vol. 31, pp. 926–936, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. D. W. Lucero, D. C. Martens, J. R. McKenna, and D. E. Starner, “Accumulation and movement of phosphorus from poultry litter application on a starr clay loam,” Communications in Soil Science and Plant Analysis, vol. 26, no. 11-12, pp. 1709–1718, 1995. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Damodar Reddy, A. Subba Rao, and P. N. Takkar, “Effects of repeated manure and fertilizer phosphorus additions on soil phosphorus dynamics under a soybean-wheat rotation,” Biology and Fertility of Soils, vol. 28, no. 2, pp. 150–155, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. T. S. Griffin, C. W. Honeycutt, and Z. He, “Changes in soil phosphorus from manure application,” Soil Science Society of America Journal, vol. 67, no. 2, pp. 645–653, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. R. W. McDowell and A. N. Sharpley, “Variation of phosphorus leached from Pennsylvanian soils amended with manures, composts or inorganic fertilizer,” Agriculture, Ecosystems and Environment, vol. 102, no. 1, pp. 17–27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Sato, D. Solomon, C. Hyland, Q. M. Ketterings, and J. Lehmann, “Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy,” Environmental Science & Technology, vol. 39, no. 19, pp. 7485–7491, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. M. K. Chiba, M. E. Mattiazzo, and F. C. Oliveira, “Sugarcane cultivation in a sewage-sludge treated ultisol . I—soil nitrogen availability and plant yield,” Revista Brasileira de Ciência do Solo, vol. 32, pp. 653–662, 2008. View at Google Scholar
  47. Z. He, H. Zhang, G. S. Toor et al., “Phosphorus distribution in sequentially extracted fractions of biosolids, poultry litter, and granulated products,” Soil Science, vol. 175, no. 4, pp. 154–161, 2010. View at Publisher · View at Google Scholar · View at Scopus