Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2017, Article ID 2561428, 10 pages
https://doi.org/10.1155/2017/2561428
Research Article

Diazotrophic Bacterial Community of Degraded Pastures

1Microbial Genetics and Biotechnology Laboratory, Academic Unit of Garanhuns, Rural Federal University of Pernambuco, 55290-000 Garanhuns, PE, Brazil
2Department of Agricultural Microbiology, Superior School of Agriculture “Luiz de Queiroz”, University of São Paulo, 13418-900 Piracicaba, SP, Brazil
3Department of Agronomy, Rural Federal University of Pernambuco, 52171-900 Recife, PE, Brazil

Correspondence should be addressed to Fernando José Freire; rb.eprfu@erierf.odnanref

Received 5 April 2017; Revised 29 June 2017; Accepted 5 July 2017; Published 6 August 2017

Academic Editor: Amaresh K. Nayak

Copyright © 2017 João Tiago Correia Oliveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Hungria, M. A. Nogueira, and R. S. Araujo, “Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: An environment-friendly component in the reclamation of degraded pastures in the tropics,” Agriculture, Ecosystems and Environment, vol. 221, pp. 125–131, 2016. View at Publisher · View at Google Scholar · View at Scopus
  2. M. B. Dias-Filho, Diagnóstico das Pastagens no Brasil, Empresa Brasileira de Pesquisa Agropecuária, Belém, Brasil, 2014.
  3. M. B. Dias-Filho, Degradação de Pastagens: Processos, Causas e Estratégias de Recuperação, Edição do Autor, Belém, Brasil, 2015.
  4. C. Loredo-Osti, L. López-Reyes, and D. Espinosa-Victoria, “Bacterias promotoras del crecimiento vegetal associadas con gramíneas,” Terra Latinomericana, vol. 22, pp. 225–239, 2004. View at Google Scholar
  5. M. L. G. Ramos, M. F. S. Meneghin, C. Pedrosa, C. M. Guimarães, and M. L. F. Konrad, “Efeito dos sistemas de manejo e plantio sobre a densidade de grupos funcionais de microrganismos, em solos de cerrado,” Bioscience Journal, vol. 28, pp. 58–68, 2012. View at Google Scholar
  6. F. D. Andreote, T. Gumiere, and A. Durrer, “Exploring interactions of plant microbiomes,” Scientia Agricola, vol. 71, no. 6, pp. 528–539, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. M. I. Rashid, L. H. Mujawar, T. Shahzad, T. Almeelbi, I. M. I. Ismail, and M. Oves, “Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils,” Microbiological Research, vol. 183, pp. 26–41, 2016. View at Publisher · View at Google Scholar · View at Scopus
  8. J. P. Panizzon and H. L. Pilz Júnior, “Bacteria-Soil-Plant Interaction: This Relationship to Generate can Inputs and New Products for the Food Industry,” Rice Research: Open Access, vol. 4, no. 1, 2016. View at Publisher · View at Google Scholar
  9. C. W. Bacon and D. M. Hinton, “Bacillus mojavensis: its endophytic nature, the surfactins, and their role in the plant response to infection by Fusarium verticillioides,” in Bacteria in Agrobiology: Plant Growth, D. K. Maheshwari, Ed., pp. 21–39, Springer-Verlag, Berlin, Germany, 2011. View at Publisher · View at Google Scholar
  10. F. Wemheuer, B. Wemheuer, D. Kretzschmar et al., “Impact of grassland management regimes on bacterial endophyte diversity differs with grass species,” Letters in Applied Microbiology, vol. 62, no. 4, pp. 323–329, 2016. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Pariona-Llanos, F. Ibañez de Santi Ferrara Felipe, H. H. Soto Gonzales, and H. R. Barbosa, “Influence of organic fertilization on the number of culturable diazotrophic endophytic bacteria isolated from sugarcane,” European Journal of Soil Biology, vol. 46, no. 6, pp. 387–393, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. R. S. Vargas, R. Bataiolli, P. B. da Costa et al., “Microbial quality of soil from the Pampa biome in response to different grazing pressures,” Genetics and Molecular Biology, vol. 38, no. 2, pp. 205–212, 2015. View at Publisher · View at Google Scholar · View at Scopus
  13. B. A. Beltrão, J. C. Mascarenhas, J. L. F. Miranda, L. C. Souza Júnior, M. J. T. G. Galvão, and S. N. Pereira, Diagnóstico do município de São João, Pernambuco, Brasil, Serviço Geológico do Brasil, Recife, Brazil, 2005.
  14. L. M. E. J. Povóas, M. M. Barros, and R. V. Ribeiro, Boletim de Monitoramento de Qualidade das Águas dos Reservatórios de Pernambuco, Brasil, Agência Pernambucana de Águas e Clima, Recife, Brasil, 2016.
  15. J. C. Santos, V. S. Souza Júnior, M. M. Corrêa, M. R. Ribeiro, M. d. Almeida, and L. E. Borges, “Caracterização de neossolos regolíticos da região semiárida do Estado de Pernambuco,” Revista Brasileira de Ciência do Solo, vol. 36, no. 3, pp. 683–696, 2012. View at Publisher · View at Google Scholar
  16. H. G. Santos, P. K. T. Jacomine, L. H. C. Anjos et al., Sistema Brasileiro de C Lassi Ficação de Solos, Empresa Brasileira de Pesquisa Agropecuária, Brasília, Brasil, 3rd edition, 2013.
  17. G. K. Donagema, D. V. B. Campos, S. B. Calderano, W. G. Teixeira, and J. H. M. Viana, Manual de Métodos de Análise de Solos, Empresa Brasileira de Pesquisa Agropecuária, Rio de Janeiro, Brasil, 2nd edition, 2011.
  18. L. A. Stoddart, A. D. Smith, and T. W. Box, Range Management, Mcgraw-Hill Book, New York, NY, USA.
  19. J. Döbereiner, V. L. Baldani, and J. I. Baldani, Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas, Empresa Brasileira de Pesquisa Agropecuária, Seropédica, Brasil, 1995.
  20. J. Kuklinsky-Sobral, W. L. Araújo, R. Mendes, I. O. Geraldi, A. A. Pizzirani-Kleiner, and J. L. Azevedo, “Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion,” Environmental Microbiology, vol. 6, no. 12, pp. 1244–1251, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. J. W. Hendrix, B. Z. Guo, and Z.-Q. An, “Divergence of mycorrhizal fungal communities in crop production systems,” Plant and Soil, vol. 170, no. 1, pp. 131–140, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. H. L. Santos and C. A. Vasconcelos, “Determinação do número de amostras de solo para análise química em diferentes condições de manejo,” Revista Brasileira de Ciência do Solo, vol. 11, pp. 97–100, 1987. View at Google Scholar
  23. V. Azevedo, D. Barbosa, F. Freire et al., “Effects of different soil sampling instruments on assessing soil fertility in the caatinga area, Brazil,” African Journal of Agricultural Research, pp. 736–740, 2013. View at Publisher · View at Google Scholar
  24. K. R. Clarke and R. N. Gorley, Primer v6: User Manual/Tutorial, Primer-E, Plymouth, UK, 2006.
  25. C. Becerra-Castro, P. S. Kidd, Á. Prieto-Fernández, N. Weyens, M.-J. Acea, and J. Vangronsveld, “Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocyclohexane-contaminated soil: Isolation and characterisation,” Plant and Soil, vol. 340, no. 1, pp. 413–433, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Murphy, B. Foster, and C. Gao, “Temporal Dynamics in Rhizosphere Bacterial Communities of Three Perennial Grassland Species,” Agronomy, vol. 6, no. 1, p. 17, 2016. View at Publisher · View at Google Scholar
  27. F. Rasche, D. Knapp, C. Kaiser et al., “Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest,” ISME Journal, vol. 5, no. 3, pp. 389–402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. S.-Y. Yuan, I.-C. Huang, and B.-V. Chang, “Biodegradation of dibutyl phthalate and di-(2-ethylhexyl) phthalate and microbial community changes in mangrove sediment,” Journal of Hazardous Materials, vol. 184, no. 1-3, pp. 826–831, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Wang, D. Zhang, L. Zhang et al., “Temporal variation of diazotrophic community abundance and structure in surface and subsoil under four fertilization regimes during a wheat growing season,” Agriculture, Ecosystems and Environment, vol. 216, pp. 116–124, 2016. View at Publisher · View at Google Scholar · View at Scopus
  30. M. C. P. Silva, A. F. Figueiredo, F. D. Andreote, and E. J. B. N. Cardoso, “Plant growth promoting bacteria in Brachiaria brizantha,” World Journal of Microbiology and Biotechnology, vol. 29, no. 1, pp. 163–171, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. C. W. Bacon, E. R. Palencia, and D. M. Hinton, “Abiotic and biotic plant stress-tolerant and beneficial secondary metabolites produced by endophytic bacillus species,” Plant Microbes Symbiosis: Applied Facets, pp. 163–177, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. B. K. Singh, S. Munro, J. M. Potts, and P. Millard, “Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils,” Applied Soil Ecology, vol. 36, no. 2-3, pp. 147–155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. G. S. Magnani, C. M. Didonet, L. M. Cruz, C. F. Picheth, F. O. Pedrosa, and E. M. Souza, “Diversity of endophytic bacteria in Brazilian sugarcane,” Genetics and Molecular Research, vol. 9, no. 1, pp. 250–258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. L. F. Chávez, L. F. Escobar, I. Anghinoni, P. C. Carvalho, and E. J. Meurer, “Diversidade metabólica e atividade microbiana no solo em sistema de integração lavoura-pecuária sob intensidades de pastejo,” Pesquisa Agropecuária Brasileira, vol. 46, no. 10, pp. 1254–1261, 2011. View at Publisher · View at Google Scholar
  35. R. M. Boddey and R. L. Victoria, “Estimation of biological nitrogen fixation associated with Brachiaria and Paspalum notaturn cv. batatais using 15N labelled organic matter and fertilizer,” Plant and Soil, vol. 90, pp. 265–292, 1986. View at Google Scholar
  36. M. d. Brasil, J. I. Baldani, and V. L. Baldani, “Ocorrência e diversidade de bactérias diazotróficas associadas a gramíneas forrageiras do Pantanal Sul Matogrossense,” Revista Brasileira de Ciência do Solo, vol. 29, no. 2, pp. 179–190, 2005. View at Publisher · View at Google Scholar
  37. R. I. Amann, W. Ludwig, and K. H. Schleifer, “Phylogenetic identification and in situ detection of individual microbial cells without cultivation,” Microbiological Reviews, vol. 59, no. 1, pp. 143–169, 1995. View at Google Scholar · View at Scopus
  38. L. F. W. Roesch, R. R. Fulthorpe, R. J. S. Jaccques, F. M. Bento, and F. A. de Oliveira Camargo, “Biogeography of diazotrophic bacteria in soils,” World Journal of Microbiology and Biotechnology, vol. 26, no. 8, pp. 1503–1508, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. F. D. Andreote, J. L. Azevedo, and W. L. Araújo, “Assessing the diversity of bacterial communities associated with plants,” Brazilian Journal of Microbiology, vol. 40, no. 3, pp. 417–432, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. J. D. van Elsas and F. G. H. Boersma, “A review of molecular methods to study the microbiota of soil and the mycosphere,” European Journal of Soil Biology, vol. 47, no. 2, pp. 77–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. M. H. Nicolaisen and N. B. Ramsing, “Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria,” Journal of Microbiological Methods, vol. 50, no. 2, pp. 189–203, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. J. C. Zak, M. R. Willig, D. L. Moorhead, and H. G. Wildman, “Functional diversity of microbial communities: a quantitative approach,” Soil Biology and Biochemistry, vol. 26, no. 9, pp. 1101–1108, 1994. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Muyzer and K. Smalla, “Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology,” Antonie van Leeuwenhoek, vol. 73, no. 1, pp. 127–141, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. A. V. Piterina and J. T. Pembroke, “Use of PCR-DGGE based molecular methods to analyse microbial community diversity and stability during the thermophilic stages of an ATAD wastewater sludge treatment process as an aid to performance monitoring,” ISRN Biotechnology, vol. 2013, Article ID 162645, 13 pages, 2013. View at Publisher · View at Google Scholar
  45. D. Spiegelman, G. Whissell, and C. W. Greer, “A survey of the methods for the characterization of microbial consortia and communities,” Canadian Journal of Microbiology, vol. 51, no. 5, pp. 355–386, 2005. View at Publisher · View at Google Scholar · View at Scopus