Table of Contents Author Guidelines Submit a Manuscript
Advances in Fuzzy Systems
Volume 2013, Article ID 343174, 12 pages
http://dx.doi.org/10.1155/2013/343174
Research Article

A Soft Computing Approach to Crack Detection and Impact Source Identification with Field-Programmable Gate Array Implementation

1Department of Computer Engineering, Defence Institute of Advanced Technology (DU), Girinagar, Pune 411025, India
2Department of Electrical & Computer Engineering, Wayne State University, Detroit, MI 48202, USA

Received 30 July 2012; Accepted 3 October 2012

Academic Editor: Thomas Meitzler

Copyright © 2013 Arati M. Dixit and Harpreet Singh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. J. Meitzler, G. Smith, M. Charbeneau et al., “Crack detection in armor plates using ultrasonic techniques,” Materials Evaluation, vol. 66, no. 6, pp. 555–559, 2008. View at Google Scholar · View at Scopus
  2. J. Qu, Y. Berthelot, and L. Jacobs, “Crack detection in thick annular components using ultrasonic guided waves,” Proceedings of the Institution of Mechanical Engineers, Part C, vol. 214, no. 9, pp. 1163–1171, 2000. View at Google Scholar · View at Scopus
  3. H. Sohn and S. B. Kim, “Development of dual PZT transducers for reference-free crack detection in thin plate structures,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 1, pp. 229–240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Zheng, D. W. Greve, and I. J. Oppenheim, “Crack detection with wireless inductively-coupled transducers,” in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, vol. 6932 of Proceedings of SPIE, p. 69321H, San Diego, Calif, USA, March 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. H. Tong and T. T. Wu, “A portable transient elastic wave system for in-situ nondestructive evaluation of concrete,” NDT.Net, vol. 6, no. 6, 2001. View at Google Scholar
  6. J. Zhu, Y. Mae, and M. Minami, “Finding and quantitative evaluation of minute flaws on metal surface using hairline,” IEEE Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1420–1429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Li, S. K. Tso, X. P. Guan, and Q. Huang, “Improving automatic detection of defects in castings by applying wavelet technique,” IEEE Transactions on Industrial Electronics, vol. 53, no. 6, pp. 1927–1934, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. L. A. Zadeh, “Fuzzy logic, neural networks, and soft computing,” Communications of the ACM, vol. 37, no. 3, pp. 77–84, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. H. C. Das and D. R. Parhi, “Online fuzzy logic crack detection of a cantilever beam,” International Journal of Knowledge-Based and Intelligent Engineering Systems, vol. 12, no. 2, pp. 157–171, 2008. View at Google Scholar
  10. H. C. Das and D. R. Parhi, “Fuzzy-neuro controler for smart fault detection of a beam,” International Journal of Acoustics and Vibrations, vol. 14, no. 2, pp. 70–80, 2009. View at Google Scholar · View at Scopus
  11. H. K. Koduru, F. Xiao, S. N. Amirkhanian, and C. H. Juang, “Using fuzzy logic and expert system approaches in evaluating flexible pavement distress: case study,” Journal of Transportation Engineering, vol. 136, no. 2, pp. 149–157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. P. M. Pawar and R. Ganguli, “Matrix crack detection in thin-walled composite beam using genetic fuzzy system,” Journal of Intelligent Material Systems and Structures, vol. 16, no. 5, pp. 395–409, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. P. M. Pawar and R. Ganguli, “Genetic fuzzy system for damage detection in beams and helicopter rotor blades,” Computer Methods in Applied Mechanics and Engineering, vol. 192, no. 16–18, pp. 2031–2057, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. J. P. Sawyer and S. S. Rao, “Structural damage detection and identification using fuzzy logic,” AIAA Journal, vol. 38, no. 12, pp. 2328–2335, 2000. View at Google Scholar · View at Scopus
  15. R. Ganguli, “A fuzzy logic system for ground based structural health monitoring of a helicopter rotor using modal data,” Journal of Intelligent Material Systems and Structures, vol. 12, no. 6, pp. 397–407, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Suresh, S. N. Omkar, R. Ganguli, and V. Mani, “Identification of crack location and depth in a cantilever beam using a modular neural network approach,” Smart Materials and Structures, vol. 13, no. 4, pp. 907–915, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. A. M. Dixit, H. Singh, and T. Meitzler, “On development of a VLSI circuit for impact source identification in ceramic plates,” in Modeling and Simulation for Defense Systems and Applications V, vol. 7705 of Proceedings of SPIE, p. 77050H, Orlando, Fla, USA, April 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Kamthan, H. Singh, A. M. Dixit et al., “Fuzzy logic approach for impact source identification in ceramic plates,” in Proceedings of the International Conference on Artificial Intelligence (ICAI'09), vol. 2, pp. 932–937, CSREA Press, July 2009.
  19. DEWESoft, Dewe43 technical reference manual.
  20. L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965. View at Google Scholar · View at Scopus
  21. The MathWorks, Fuzzy Logic Toolbox 2 User’s Guide, 2009.
  22. H. Singh, S. Kamthan, A. M. Dixit, A. Mustapha, T. Meitzler, and A. Meitzler, “Fuzzy and neurofuzzy techniques for crack detection in armor plates,” in Proceedings of the International Conference on Modeling, Simulation and Visualization Methods (MSV'08), pp. 298–307, July 2008. View at Scopus
  23. J. Yen and R. Langari, Fuzzy Logic: Intelligence, Control and Information, Prentice Hall, New York, NY, USA, 1998.
  24. S. Brown and J. Rose, “FPGA and CPLD architectures: a tutorial,” IEEE Design and Test of Computers, vol. 13, no. 2, pp. 42–57, 1996. View at Google Scholar · View at Scopus
  25. E. Monmasson and M. N. Cirstea, “FPGA design methodology for industrial control systems—a review,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1824–1842, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Kim, “An Implementation of fuzzy logic controller on the reconfigurable FPGA system,” IEEE Transactions on Industrial Electronics, vol. 47, no. 3, pp. 703–715, 2000. View at Google Scholar · View at Scopus
  27. Xilinx, The Programmable Logic Data Book, 2000.
  28. SynaptiCAD, “BugHunter Pro and VeriLogger simulators,” Version 12, December 2007.
  29. Model Technology Incorporated, Start Here for ModelSim SE, 2002.
  30. P. Beena and R. Ganguli, “Structural damage detection using fuzzy cognitive maps and Hebbian learning,” Applied Soft Computing Journal, vol. 11, no. 1, pp. 1014–1020, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Chandrashekhar and R. Ganguli, “Structural damage detection using modal curvature and fuzzy logic,” Structural Health Monitoring, vol. 8, no. 4, pp. 267–282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Chandrashekhar and R. Ganguli, “Damage assessment of structures with uncertainty by using mode-shape curvatures and fuzzy logic,” Journal of Sound and Vibration, vol. 326, no. 3–5, pp. 939–957, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Chandrashekhar and R. Ganguli, “Uncertainty handling in structural damage detection using fuzzy logic and probabilistic simulation,” Mechanical Systems and Signal Processing, vol. 23, no. 2, pp. 384–404, 2009. View at Publisher · View at Google Scholar · View at Scopus