Table of Contents
Advances in Geriatrics
Volume 2014, Article ID 957073, 14 pages
http://dx.doi.org/10.1155/2014/957073
Review Article

Biodemographic Analyses of Longitudinal Data on Aging, Health, and Longevity: Recent Advances and Future Perspectives

Center for Population Health and Aging, Duke University, Erwin Mill Building, 2024 W. Main Street, P.O. Box 90420, Durham, NC 27705, USA

Received 2 March 2014; Accepted 17 June 2014; Published 24 July 2014

Academic Editor: Stephen D. Ginsberg

Copyright © 2014 Konstantin G. Arbeev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. Carey and J. W. Vaupel, “Biodemography,” in Handbook of Population, D. Poston and M. Micklin, Eds., pp. 625–658, Kluwer Academic/Plenum Publishers, New York, NY, USA, 2005. View at Google Scholar
  2. J. R. Carey, “Biodemography: research prospects and directions,” Demographic Research, vol. 19, article 50, pp. 1749–1757, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Christensen, “Human biodemography: some challenges and possibilities for aging research,” Demographic Research, vol. 19, no. 43, pp. 1575–1586, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Kaplan and M. Gurven, “Top-down and bottom-up research in biodemography,” Demographic Research, vol. 19, article 44, pp. 1587–1602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Vasunilashorn and E. M. Crimmins, “Biodemography: integrating disciplines to explain aging,” in Handbook of Theories of Aging, V. L. Bengtson, D. Gans, N. M. Putney, and M. Silverstein, Eds., pp. 63–85, Springer, New York, NY, USA, 2008. View at Google Scholar
  6. K. W. Wachter, “Biodemography comes of age,” Demographic Research, vol. 19, article 40, pp. 1501–1512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Crimmins, J. K. Kim, and S. Vasunilashorn, “Biodemography: new approaches to understanding trends and differences in population health and mortality,” Demography, vol. 47, no. 1, pp. S41–S64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. W. Vaupel, “Biodemography of human ageing,” Nature, vol. 464, no. 7288, pp. 536–542, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. C. DeNavas-Walt, B. D. Proctor, and J. C. Smith, U.S. Census Bureau, Current Population Reports, P60-243, Income, Poverty, and Health Insurance Coverage in the United States: 2011, U.S. Government Printing Office, Washington, DC, USA, 2012.
  10. I. Akushevich, J. Kravchenko, S. Ukraintseva, K. Arbeev, and A. I. Yashin, “Age patterns of incidence of geriatric disease in the U.S. elderly population: medicare-based analysis,” Journal of the American Geriatrics Society, vol. 60, no. 2, pp. 323–327, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Akushevich, J. Kravchenko, S. Ukraintseva, K. Arbeev, and A. Yashin, “Population-based analysis of incidence rates of cancer and noncancer chronic diseases in the US elderly using NLTCS/medicare-linked database,” ISRN Geriatrics, vol. 2013, Article ID 943418, 15 pages, 2013. View at Publisher · View at Google Scholar
  12. I. Akushevich, J. Kravchenko, S. Ukraintseva, K. Arbeev, and A. I. Yashin, “Circulatory diseases in the U.S. elderly in the linked national long-term care survey-medicare satabase: population-based analysis of incidence, comorbidity, and disability,” Research on Aging, vol. 35, no. 4, pp. 437–458, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Akushevich, J. Kravchenko, S. Ukraintseva, K. Arbeev, and A. I. Yashin, “Time trends of incidence of age-associated diseases in the US elderly population: Medicare-based analysis,” Age and Ageing, vol. 42, no. 4, pp. 494–500, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. C. F. Mendes de Leon, D. T. Gold, T. A. Glass, L. Kaplan, and L. K. George, “Disability as a function of social networks and support in elderly African Americans and whites: the duke EPESE 1986-1992,” Journals of Gerontology B: Psychological Sciences and Social Sciences, vol. 56, no. 3, pp. S179–S190, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. L. C. Giles, P. A. Metcalf, G. F. V. Glonek, M. A. Luszcz, and G. R. Andrews, “The effects of social networks on disability in older Australians,” Journal of Aging and Health, vol. 16, no. 4, pp. 517–538, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M.-A. Escobar-Bravo, D. Puga-González, and M. Martín-Baranera, “Protective effects of social networks on disability among older adults in Spain,” Archives of Gerontology and Geriatrics, vol. 54, no. 1, pp. 109–116, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. S. V. Ukraintseva, K. G. Arbeev, I. Akushevich et al., “Trade-offs between cancer and other diseases: do they exist and influence longevity?” Rejuvenation Research, vol. 13, no. 4, pp. 387–396, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Tabarés-Seisdedos, N. Dumont, A. Baudot et al., “No paradox, no progress: inverse cancer comorbidity in people with other complex diseases,” The Lancet Oncology, vol. 12, no. 6, pp. 604–608, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. J. A. Driver, A. Beiser, R. Au et al., “Inverse association between cancer and Alzheimer's disease: results from the Framingham Heart Study,” British Medical Journal, vol. 344, Article ID e1442, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Akushevich, J. Kravchenko, S. Ukraintseva, K. Arbeev, A. Kulminski, and A. I. Yashin, “Morbidity risks among older adults with pre-existing age-related diseases,” Experimental Gerontology, vol. 48, no. 12, pp. 1395–1401, 2013. View at Publisher · View at Google Scholar
  21. A. I. Yashin, S. V. Ukraintseva, I. V. Akushevich, K. G. Arbeev, A. Kulminski, and L. Akushevich, “Trade-off between cancer and aging: what role do other diseases play? Evidence from experimental and human population studies,” Mechanisms of Ageing and Development, vol. 130, no. 1-2, pp. 98–104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. M. Kulminski, I. Culminskaya, S. V. Ukraintseva et al., “Trade-off in the effects of the apolipoprotein E polymorphism on the ages at onset of CVD and cancer influences human lifespan,” Aging Cell, vol. 10, no. 3, pp. 533–541, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Akushevich, J. Kravchenko, S. Ukraintseva, K. Arbeev, and A. I. Yashin, “Recovery and survival from aging-associated diseases,” Experimental Gerontology, vol. 48, no. 8, pp. 824–830, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Yashin, I. Akushevich, S. Ukraintseva, L. Akushevich, K. Arbeev, and A. Kulminski, “Trends in survival and recovery from stroke: evidence from the national long-term care survey/medicare data,” Stroke, vol. 41, no. 3, pp. 563–565, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. C. D. Mathers and J. M. Robine, “How good is Sullivan's method for monitoring changes in population health expectancies,” Journal of Epidemiology and Community Health, vol. 51, no. 1, pp. 80–86, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Putter, M. Fiocco, and R. B. Geskus, “Tutorial in biostatistics: competing risks and multi-state models,” Statistics in Medicine, vol. 26, no. 11, pp. 2389–2430, 2007. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  27. D. P. Goldman, P. G. Shekelle, J. Bhattacharya et al., “Health status and medical treatment of the future elderly,” Final Report TR-169-CMS, RAND Corporation, Santa Monica, Calif, USA, 2004. View at Google Scholar
  28. J. Lubitz, “Health, technology, and medical care spending,” Health Affairs, vol. 24, pp. W5R81–W85R85, 2005. View at Google Scholar · View at Scopus
  29. I. Akushevich, J. Kravchenko, L. Akushevich, S. Ukraintseva, K. Arbeev, and A. I. Yashin, “Medical cost trajectories and onsets of cancer and noncancer diseases in US elderly population,” Computational and Mathematical Methods in Medicine, vol. 2011, Article ID 857892, 14 pages, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  30. R. Suzman, “Prologue: research on the demography and economics of aging,” Demography, vol. 47, no. 1, pp. S1–S4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. I. Yashin, G. De Benedictis, J. W. Vaupel et al., “Genes, demography, and life span: the contribution of demographic data in genetic studies on aging and longevity,” American Journal of Human Genetics, vol. 65, no. 4, pp. 1178–1193, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. A. I. Yashin, G. de Benedictis, J. W. Vaupel et al., “Genes and longevity: lessons from studies of centenarians,” Journals of Gerontology A: Biological Sciences and Medical Sciences, vol. 55, no. 7, pp. B319–B328, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. K. G. Arbeev, S. V. Ukraintseva, L. S. Arbeeva, I. Akushevich, A. M. Kulminski, and A. I. Yashin, “Evaluation of genotype-specific survival using joint analysis of genetic and non-genetic subsamples of longitudinal data,” Biogerontology, vol. 12, no. 2, pp. 157–166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. A. I. Yashin, K. G. Arbeev, and D. Wu, “How the quality of GWAS of human lifespan and health span can be improved,” Frontiers in Genetics, vol. 4, p. 125, 2013. View at Google Scholar
  35. J. Hardy and A. Singleton, “Genomewide association studies and human disease,” The New England Journal of Medicine, vol. 360, no. 17, pp. 1759–1768, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. K. L. Lunetta, R. B. D'Agostino Sr., D. Karasik et al., “Genetic correlates of longevity and selected age-related phenotypes: a genome-wide association study in the framingham study,” BMC Medical Genetics, vol. 8, no. 1, article S13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. B. Newman, S. Walter, K. L. Lunetta et al., “A Meta-analysis of four genome-wide association studies of survival to age 90 years or older: the cohorts for heart and aging research in genomic epidemiology consortium,” Journals of Gerontology A: Biological Sciences and Medical Sciences, vol. 65, no. 5, pp. 478–487, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Walter, G. Atzmon, E. W. Demerath et al., “A genome-wide association study of aging,” Neurobiology of Aging, vol. 32, no. 11, pp. 2109.e15–2109.e28, 2011. View at Publisher · View at Google Scholar
  39. J. Deelen, M. Beekman, H. W. Uh et al., “Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited,” Aging Cell, vol. 10, no. 4, pp. 686–698, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Nebel, R. Kleindorp, A. Caliebe et al., “A genome-wide association study confirms APOE as the major gene influencing survival in long-lived individuals,” Mechanisms of Ageing and Development, vol. 132, no. 6-7, pp. 324–330, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Maher, “Personal genomes: the case of the missing heritability,” Nature, vol. 456, no. 7218, pp. 18–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. T. A. Manolio, F. S. Collins, N. J. Cox et al., “Finding the missing heritability of complex diseases,” Nature, vol. 461, no. 7265, pp. 747–753, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Slatkin, “Epigenetic inheritance and the missing heritability problem,” Genetics, vol. 182, no. 3, pp. 845–850, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. P. M. Visscher, W. G. Hill, and N. R. Wray, “Heritability in the genomics era—concepts and misconceptions,” Nature Reviews Genetics, vol. 9, no. 4, pp. 255–266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. A. I. Yashin, D. Q. Wu, K. G. Arbeev, and S. V. Ukraintseva, “Joint influence of small-effect genetic variants on human longevity,” Aging, vol. 2, no. 9, pp. 612–620, 2010. View at Google Scholar · View at Scopus
  46. A. B. Mitnitski, A. J. Mogilner, and K. Rockwood, “Accumulation of deficits as a proxy measure of aging,” TheScientificWorldJournal, vol. 1, pp. 323–336, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Kulminski, A. Yashin, S. Ukraintseva et al., “Accumulation of health disorders as a systemic measure of aging: findings from the NLTCS data,” Mechanisms of Ageing and Development, vol. 127, no. 11, pp. 840–848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. A. I. Yashin, K. G. Arbeev, A. Kulminski, I. Akushevich, L. Akushevich, and S. V. Ukraintseva, “Health decline, aging and mortality: how are they related?” Biogerontology, vol. 8, no. 3, pp. 291–302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. A. I. Yashin, D. Wu, K. G. Arbeev, E. Stallard, K. C. Land, and S. V. Ukraintseva, “How genes influence life span: the biodemography of human survival,” Rejuvenation Research, vol. 15, no. 4, pp. 374–380, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. B. L. Strehler and A. S. Mildvan, “General theory of mortality and aging,” Science, vol. 132, pp. 14–21, 1960. View at Publisher · View at Google Scholar · View at Scopus
  51. J. W. Vaupel and A. I. Yashin, “Repeated resuscitation: how lifesaving alters life tables,” Demography, vol. 24, no. 1, pp. 123–135, 1987. View at Publisher · View at Google Scholar · View at Scopus
  52. A. I. Yashin, D. Wu, K. G. Arbeev, and S. V. Ukraintseva, “Polygenic effects of common single-nucleotide polymorphisms on life span: when association meets causality,” Rejuvenation Research, vol. 15, no. 4, pp. 381–394, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. A. M. Kulminski, I. Culminskaya, K. G. Arbeev, S. V. Ukraintseva, L. Arbeeva, and A. I. Yashin, “Trade-off in the effect of the APOE gene on the ages at onset of cardiocascular disease and cancer across ages, gender, and human generations,” Rejuvenation Research, vol. 16, no. 1, pp. 28–34, 2013. View at Publisher · View at Google Scholar · View at Scopus
  54. A. M. Kulminski, K. G. Arbeev, K. Christensen et al., “Biogenetic mechanisms predisposing to complex phenotypes in parents may function differently in their children,” The Journals of Gerontology A: Biological sciences and medical sciences, vol. 68, no. 7, pp. 760–768, 2013. View at Publisher · View at Google Scholar · View at Scopus
  55. A. M. Kulminski, I. Culminskaya, K. G. Arbeev et al., “The role of lipid-related genes, aging-related processes, and environment in healthspan,” Aging Cell, vol. 12, no. 2, pp. 237–246, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. A. I. Yashin, K. G. Arbeev, S. V. Ukraintseva, I. Akushevich, and A. Kulminski, “Patterns of aging-related changes on the way to 100: an approach to studying aging, mortality, and longevity from longitudinal data,” The North American Actuarial Journal, vol. 16, no. 4, pp. 403–433, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. A. I. Yashin, I. V. Akushevich, K. G. Arbeev, L. Akushevich, S. V. Ukraintseva, and A. Kulminski, “Insights on aging and exceptional longevity from longitudinal data: novel findings from the Framingham heart study,” Age, vol. 28, no. 4, pp. 363–374, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. K. G. Arbeev, S. V. Ukraintseva, I. Akushevich et al., “Age trajectories of physiological indices in relation to healthy life course,” Mechanisms of Ageing and Development, vol. 132, no. 3, pp. 93–102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. A. I. Yashin, K. G. Arbeev, D. Wu et al., “How lifespan associated genes modulate aging changes: lessons from analysis of longitudinal data,” Frontiers in Genetics, vol. 4, article 3, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. A. I. Yashin, K. G. Arbeev, S. V. Ukraintseva, I. Akushevich, and A. Kulminski, Patterns of Aging Related Changes on the Way to 100: An Approach to Studying Aging, Mortality, and Longevity from Longitudinal Data. 2011 Living to 100 Monograph, Society of Actuaries Monograph M-LI11-1, Schaumburg, Ill, USA, 2011.
  61. A. I. Yashin, K. G. Arbeev, I. Akushevich et al., “Dynamic determinants of longevity and exceptional health,” Current Gerontology and Geriatrics Research, vol. 2010, Article ID 381637, 13 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. K. G. Arbeev, S. V. Ukraintseva, and A. M. Kulminski, “Effect of the APOE polymorphism and age trajectories of physiological variables on mortality: application of genetic stochastic process model of aging,” Scientifica, vol. 2012, Article ID 568628, 14 pages, 2012. View at Publisher · View at Google Scholar
  63. R. L. Prentice, “Covariate measurement errors and parameter estimation in a failure time regression model,” Biometrika, vol. 69, no. 2, pp. 331–342, 1982. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  64. M. J. Sweeting and S. G. Thompson, “Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture,” Biometrical Journal, vol. 53, no. 5, pp. 750–763, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  65. A. A. Tsiatis and M. Davidian, “Joint modeling of longitudinal and time-to-event data: an overview,” Statistica Sinica, vol. 14, no. 3, pp. 809–834, 2004. View at Google Scholar · View at MathSciNet · View at Scopus
  66. P. J. Diggle, I. Sousa, and A. G. Chetwynd, “Joint modelling of repeated measurements and time-to-event outcomes: the fourth Armitage lecture,” Statistics in Medicine, vol. 27, no. 16, pp. 2981–2998, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  67. J. G. Ibrahim, H. Chu, and L. M. Chen, “Basic concepts and methods for joint models of longitudinal and survival data,” Journal of Clinical Oncology, vol. 28, no. 16, pp. 2796–2801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. I. Sousa, “A review on joint modelling of longitudinal measurements and time-to-event,” RevStat: Statistical Journal, vol. 9, no. 1, pp. 57–81, 2011. View at Google Scholar · View at MathSciNet · View at Scopus
  69. L. Wu, W. Liu, G. Y. Yi, and Y. Huang, “Analysis of longitudinal and survival data: joint modeling, inference methods, and issues,” Journal of Probability and Statistics, vol. 2012, Article ID 640153, 17 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  70. D. Rizopoulos, Joint Models for Longitudinal and Time-to-Event Data with Applications in R, Chapman and Hall/CRC, Boca Raton, Fla, USA, 2012.
  71. T. E. Seeman, B. S. McEwen, J. W. Rowe, and B. H. Singer, “Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 8, pp. 4770–4775, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. J. A. Troncale, “The aging process: physiologic changes and pharmacologic implications,” Postgraduate Medicine, vol. 99, no. 5, pp. 111–114, 1996. View at Google Scholar · View at Scopus
  73. J. Lund, P. Tedesco, K. Duke, J. Wang, S. K. Kim, and T. E. Johnson, “Transcriptional profile of aging in C. elegans,” Current Biology, vol. 12, no. 18, pp. 1566–1573, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. D. M. Hall, L. Xu, V. J. Drake et al., “Aging reduces adaptive capacity and stress protein expression in the liver after heat stress,” Journal of Applied Physiology, vol. 89, no. 2, pp. 749–759, 2000. View at Google Scholar · View at Scopus
  75. M. M. Rankin and J. A. Kushner, “Adaptive β-cell proliferation is severely restricted with advanced age,” Diabetes, vol. 58, no. 6, pp. 1365–1372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. B. Strehler, Time, Cells, and Aging, Academic Press, London, UK, 1962.
  77. G. V. Semenchenko, A. A. Khazaeli, J. W. Curtsinger, and A. I. Yashin, “Stress resistance declines with age: analysis of data from a survival experiment with Drosophila melanogaster,” Biogerontology, vol. 5, no. 1, pp. 17–30, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. S. V. Ukraintseva and A. I. Yashin, “Individual aging and cancer risk: how are they related?” Demographic Research, vol. 9, no. 8, pp. 163–195, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. A. I. Yashin, K. G. Arbeev, I. Akushevich, A. Kulminski, L. Akushevich, and S. V. Ukraintseva, “Stochastic model for analysis of longitudinal data on aging and mortality,” Mathematical Biosciences, vol. 208, no. 2, pp. 538–551, 2007. View at Publisher · View at Google Scholar
  80. A. A. Cohen, E. Milot, J. Yong et al., “A novel statistical approach shows evidence for multi-system physiological dysregulation during aging,” Mechanisms of Ageing and Development, vol. 134, no. 3-4, pp. 110–117, 2013. View at Publisher · View at Google Scholar · View at Scopus
  81. K. G. Arbeev, I. Akushevich, A. M. Kulminski et al., “Genetic model for longitudinal studies of aging, health, and longevity and its potential application to incomplete data,” Journal of Theoretical Biology, vol. 258, no. 1, pp. 103–111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. A. I. Yashin, K. G. Arbeev, I. Akushevich et al., “The quadratic hazard model for analyzing longitudinal data on aging, health, and the life span,” Physics of Life Reviews, vol. 9, no. 2, pp. 177–188, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. A. I. Yashin, K. G. Arbeev, I. Akushevich et al., “Modeling longitudinal data on health aging and life span,” Physics of Life Reviews, vol. 9, no. 2, pp. 195–197, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. I. Akushevich, K. Arbeev, S. Ukraintseva, and A. Yashin, “Theory of individual health histories and dependent competing risks,” in JSM Proceedings, Section on Risk Analysis, pp. 5385–5399, 2011.
  85. A. I. Yashin, I. Akushevich, K. G. Arbeev, A. Kulminski, and S. Ukraintseva, “Joint analysis of health histories, physiological state, and survival,” Mathematical Population Studies, vol. 18, no. 4, pp. 207–233, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  86. A. I. Yashin, I. Akushevich, K. G. Arbeev, A. Kulminski, and S. V. Ukraintseva, “New approach for analyzing longitudinal data on health, physiological state, and survival collected using different observational plans,” in Proceedings of the Joint Statistical Meetings, Section on Government Statistics (JSM '11), pp. 5336–5350, Alexandria, Va, USA, 2011.
  87. A. I. Yashin, I. Akushevich, K. Arbeev, A. Kulminski, and S. Ukraintseva, “Chapter 19. Methodological aspects of studying human aging, health, and mortality,” in Applied Demography and Public Health, N. Hoque, M. A. McGehee, and B. S. Bradshaw, Eds., pp. 337–355, Springer, Dordrecht, The Netherlands, 2013. View at Google Scholar