Table of Contents Author Guidelines Submit a Manuscript
Advances in Hematology
Volume 2010, Article ID 345053, 10 pages
http://dx.doi.org/10.1155/2010/345053
Review Article

Pathobiology of Anaplastic Large Cell Lymphoma

1Hematopathology Section, Department of Hematology and Oncological Sciences “L. and A. Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
2Molecular Pathology Laboratory, Haematopathology Section, Department of Hematology and Oncological Sciences “L. and A. Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Pavillon 8, Via Massarenti 9, 40138 Bologna, Italy
3Center for Experimental Research and Medical Studies (CERMS), University of Torino, 10126 Torino, Italy
4Department of Haematology, St. George Hospital, Clinical Services Building, Kogarah NSW 2217, Australia

Received 31 August 2010; Revised 24 November 2010; Accepted 12 December 2010

Academic Editor: Shaji Kumar

Copyright © 2010 Pier Paolo Piccaluga et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Delsol, E. S. Jaffe, B. Falini et al., “Anaplastic large cell lymphoma (ALCL), ALK-positive,” in WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues, S. Swerdlow, E. Campo, and N. L. Harris, Eds., pp. 312–316, IARC, Lyon, France, 4th edition, 2008. View at Google Scholar
  2. D. Y. Mason, N. L. Harris, G. Delsol et al., “Anaplastic large cell lymphoma, ALK-negative,” in WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues, S. Swerdlow, E. Campo, N. L. Harris et al., Eds., pp. 317–319, IARC, Lyon, France, 4th edition, 2008. View at Google Scholar
  3. H. Stein, D. Y. Mason, and J. Gerdes, “The expression of the Hodgkin's disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells,” Blood, vol. 66, no. 4, pp. 848–858, 1985. View at Google Scholar · View at Scopus
  4. A. G. Stansfeld, J. Diebold, H. Noel et al., “Updated Kiel classification for lymphomas,” Lancet, vol. 1, no. 8580, pp. 292–293, 1988. View at Google Scholar · View at Scopus
  5. N. L. Harris, E. S. Jaffe, H. Stein et al., “A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group,” Blood, vol. 84, no. 5, pp. 1361–1392, 1994. View at Google Scholar · View at Scopus
  6. K. J. Savage, N. L. Harris, J. M. Vose et al., “ALK anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project,” Blood, vol. 111, no. 12, pp. 5496–5504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Piva, L. Agnelli, E. Pellegrino et al., “Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms,” Journal of Clinical Oncology, vol. 28, no. 9, pp. 1583–1590, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Ralfkiaer, R. Willemze, M. Paulli, and M. Kadin, “Primary cutaneous CD30-positive T-cell lymphoproliferative disorders,” in WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues, S Swerdlow, E Campo, N. L. Harris et al., Eds., pp. 300–301, IARC, Lyon, France, 4th edition, 2008. View at Google Scholar
  9. J. T. Sandlund, C. H. Pui, W. M. Roberts et al., “Clinicopathologic features and treatment outcome of children with large- cell lymphoma and the t(2;5)(p23;q35),” Blood, vol. 84, no. 8, pp. 2467–2471, 1994. View at Google Scholar · View at Scopus
  10. M. E. Kadin and S. W. Morris, “The t(2;5) in human lymphomas,” Leukemia and Lymphoma, vol. 29, no. 3-4, pp. 249–256, 1998. View at Google Scholar · View at Scopus
  11. M. A. Rizvi, A. M. Evens, M. S. Tallman, B. P. Nelson, and S. T. Rosen, “T-cell non-Hodgkin lymphoma,” Blood, vol. 107, no. 4, pp. 1255–1264, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. K. J. Savage, “Peripheral T-cell Lymphomas,” Blood Reviews, vol. 21, no. 4, pp. 201–216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Benharroch, Z. Meguerian-Bedoyan, L. Lamant et al., “ALK-positive lymphoma: a single disease with a broad spectrum of morphology,” Blood, vol. 91, no. 6, pp. 2076–2084, 1998. View at Google Scholar · View at Scopus
  14. E. S. Jaffe, “Anaplastic large cell lymphoma: the shifting sands of diagnostic hematopathology,” Modern Pathology, vol. 14, no. 3, pp. 219–228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Stein, H. D. Foss, H. Durkop et al., “CD30+ anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features,” Blood, vol. 96, no. 12, pp. 3681–3695, 2000. View at Google Scholar · View at Scopus
  16. M. E. Kadin, “Anaplastic large cell lymphoma and its morphological variants,” Cancer Surveys, vol. 30, pp. 77–86, 1997. View at Google Scholar · View at Scopus
  17. B. Falini, B. Bigerna, M. Fizzotti et al., “ALK expression defines a distinct group of T/null lymphomas (“ALK lymphomas”) with a wide morphological spectrum,” American Journal of Pathology, vol. 153, no. 3, pp. 875–886, 1998. View at Google Scholar · View at Scopus
  18. S. A. Pileri, K. Pulford, S. Mori et al., “Frequent expression of the NPM-ALK chimeric fusion protein in anaplastic large-cell lymphoma, lympho-histiocytic type,” American Journal of Pathology, vol. 150, no. 4, pp. 1207–1211, 1997. View at Google Scholar · View at Scopus
  19. M. C. Kinney, R. D. Collins, J. P. Greer, J. A. Whitlock, N. Sioutos, and M. E. Kadin, “A small-cell-predominant variant of primary Ki-1 (CD30)+ T-cell lymphoma,” American Journal of Surgical Pathology, vol. 17, no. 9, pp. 859–868, 1993. View at Google Scholar · View at Scopus
  20. P. P. Piccaluga, S. Ascani, G. F. Orcioni et al., “Anaplastic lymphoma kinase expression as a marker of malignancy. Application to a case of anaplastic large cell lymphoma with huge granulomatous reaction,” Haematologica, vol. 85, no. 9, pp. 978–981, 2000. View at Google Scholar · View at Scopus
  21. K. B. Hodges, R. D. Collins, J. P. Greer, M. E. Kadin, and M. C. Kinney, “Transformation of the small cell variant Ki-1+ lymphoma to anaplastic large cell lymphoma: pathologic and clinical features,” American Journal of Surgical Pathology, vol. 23, no. 1, pp. 49–58, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. J. K. C. Chan, R. Buchanan, and C. D. M. Fletcher, “Sarcomatoid variant of anaplastic large-cell Ki-1 lymphoma,” American Journal of Surgical Pathology, vol. 14, no. 10, pp. 983–988, 1990. View at Google Scholar · View at Scopus
  23. A. Fornari, R. Piva, R. Chiarle, D. Novero, and G. Inghirami, “Anaplastic large cell lymphoma: one or more entities among T-cell lymphoma?” Hematological Oncology, vol. 27, no. 4, pp. 161–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Vassallo, L. Lamant, L. Brugieres et al., “ALK-positive anaplastic large cell lymphoma mimicking nodular sclerosis Hodgkin's lymphoma: report of 10 cases,” American Journal of Surgical Pathology, vol. 30, no. 2, pp. 223–229, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Falini, “Anaplastic large cell lymphoma: pathological, molecular and clinical features,” British Journal of Haematology, vol. 114, no. 4, pp. 741–760, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Falini, S. Pileri, G. Pizzolo et al., “CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy,” Blood, vol. 85, no. 1, pp. 1–14, 1995. View at Google Scholar · View at Scopus
  27. R. Horie, T. Watanabe, Y. Morishita et al., “Ligand-independent signaling by overexpressed CD30 drives NF-κB activation in Hodgkin-Reed-Sternberg cells,” Oncogene, vol. 21, no. 16, pp. 2493–2503, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. C. W. Wright, J. M. Rumble, and C. S. Duckett, “CD30 activates both the canonical and alternative NF-κB pathways in anaplastic large cell lymphoma cells,” Journal of Biological Chemistry, vol. 282, no. 14, pp. 10252–10262, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. O. Josimovic-Alasevic, H. Durkop, R. Schwarting, E. Backe, H. Stein, and T. Diamantstein, “Ki-1 (CD30) antigen is released by Ki-1-positive tumor cells in vitro and in vivo. I. Partial characterization of soluble Ki-1 antigen and detection of the antigen in cell culture supernatants and in serum by an enzyme-linked immunosorbent assay,” European Journal of Immunology, vol. 19, no. 1, pp. 157–162, 1989. View at Google Scholar · View at Scopus
  30. G. Delson, T. Al Saati, K. C. Gatter et al., “Coexpression of epithelial membrane antigen (EMA), Ki-1, and interleukin-2 receptor by anaplastic large cell lymphomas. Diagnostic value of so-called malignant histiocytosis,” American Journal of Pathology, vol. 130, no. 1, pp. 59–70, 1988. View at Google Scholar · View at Scopus
  31. I. Bonzheim, E. Geissinger, S. Roth et al., “Anaplastic large cell lymphomas lack the expression of T-cell receptor molecules or molecules of proximal T-cell receptor signaling,” Blood, vol. 104, no. 10, pp. 3358–3360, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. T. S. Barry, E. S. Jaffe, L. Sorbara, M. Raffeld, and S. Pittaluga, “Peripheral T-cell lymphomas expressing CD30 and CD15,” American Journal of Surgical Pathology, vol. 27, no. 12, pp. 1513–1522, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Eckerle, V. Brune, C. Döring et al., “Gene expression profiling of isolated tumour cells from anaplastic large cell lymphomas: insights into its cellular origin, pathogenesis and relation to Hodgkin lymphoma,” Leukemia, vol. 23, no. 11, pp. 2129–2138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. H. D. Foss, I. Anagnostopoulos, I. Araujo et al., “Anaplastic large-cell lymphomas of T-cell and null-cell phenotype express cytotoxic molecules,” Blood, vol. 88, no. 10, pp. 4005–4011, 1996. View at Google Scholar · View at Scopus
  35. L. Krenacs, A. Wellmann, L. Sorbara et al., “Cytotoxic cell antigen expression in anaplastic large cell lymphomas of T- and null-cell type and Hodgkin's disease: evidence for distinct cellular origin,” Blood, vol. 89, no. 3, pp. 980–989, 1997. View at Google Scholar · View at Scopus
  36. C. Agostinelli, E. Sabattini, J. O. Gjørret et al., “Characterization of a new monoclonal antibody against PAX5/BASP in 1525 paraffin-embedded human and animal tissue samples,” Applied Immunohistochemistry & Molecular Morphology, vol. 18, no. 6, pp. 561–572, 2010. View at Publisher · View at Google Scholar
  37. K. Pulford, L. Lamant, S. W. Morris et al., “Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1,” Blood, vol. 89, no. 4, pp. 1394–1404, 1997. View at Google Scholar · View at Scopus
  38. R. Chiarle, C. Voena, C. Ambrogio, R. Piva, and G. Inghirami, “The anaplastic lymphoma kinase in the pathogenesis of cancer,” Nature Reviews Cancer, vol. 8, no. 1, pp. 11–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. C. A. Griffin, A. L. Hawkins, C. Dvorak, C. Henkle, T. Ellingham, and E. J. Perlman, “Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors,” Cancer Research, vol. 59, no. 12, pp. 2776–2780, 1999. View at Google Scholar · View at Scopus
  40. B. Lawrence, A. Perez-Atayde, M. K. Hibbard et al., “TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors,” American Journal of Pathology, vol. 157, no. 2, pp. 377–384, 2000. View at Google Scholar · View at Scopus
  41. K. Pulford, B. Falini, A. H. Banham et al., “Immune response to the ALK oncogenic tyrosine kinase in patients with anaplastic large-cell lymphoma,” Blood, vol. 96, no. 4, pp. 1605–1607, 2000. View at Google Scholar · View at Scopus
  42. R. Chiarle, C. Martinengo, C. Mastini et al., “The anaplastic lymphoma kinase is an effective oncoantigen for lymphoma vaccination,” Nature Medicine, vol. 14, no. 6, pp. 676–680, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Cheuk, R. W. Hill, C. Bacchi, M. A. Dias, and J. K. C. Chan, “Hypocellular anaplastic large cell lymphoma mimicking inflammatory lesions of lymph nodes,” American Journal of Surgical Pathology, vol. 24, no. 11, pp. 1537–1543, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. M. U. Kuefer, A. T. Look, K. Pulford et al., “Retrovirus-mediated gene transfer of NPM-ALK causes lymphoid malignancy in mice,” Blood, vol. 90, no. 8, pp. 2901–2910, 1997. View at Google Scholar · View at Scopus
  45. R. Chiarle, J. Z. Gong, I. Guasparri et al., “NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors,” Blood, vol. 101, no. 5, pp. 1919–1927, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Chiarle, W. J. Simmons, H. Cai et al., “Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target,” Nature Medicine, vol. 11, no. 6, pp. 623–629, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Marafioti, L. Jabri, K. Pulford, P. Brousset, D. Y. Mason, and G. Delsol, “Leucocyte-specific protein (LSP1) in malignant lymphoma and Hodgkin's disease,” British Journal of Haematology, vol. 120, no. 4, pp. 671–678, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. E. J. Schlette, L. J. Medeiros, A. Goy, R. Lai, and G. Z. Rassidakis, “Survivin expression predicts poorer prognosis in anaplastic large-cell lymphoma,” Journal of Clinical Oncology, vol. 22, no. 9, pp. 1682–1688, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Z. Rassidakis, R. Lai, M. Herling, C. Cromwell, A. Schmitt-Graeff, and L. J. Medeiros, “Retinoblastoma protein is frequently absent or phosphorylated in anaplastic large-cell lymphoma,” American Journal of Pathology, vol. 164, no. 6, pp. 2259–2267, 2004. View at Google Scholar · View at Scopus
  50. P. Brousset, P. Rochaix, S. Chittal, H. Rubie, A. Robert, and G. Delsoil, “High incidence of Epstein-Barr virus detection in Hodgkin's disease and absence of detection in anaplastic large-cell lymphoma in children,” Histopathology, vol. 23, no. 2, pp. 189–191, 1993. View at Google Scholar · View at Scopus
  51. V. Costes-Martineau, C. Delfour, S. Obled et al., “Anaplastic lymphoma kinase (ALK) protein expressing lymphoma after liver transplantation: case report and literature review,” Journal of Clinical Pathology, vol. 55, no. 11, pp. 868–871, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Morgan, B. K. Hecht, and A. A. Sandberg, “Chromosome 5q35 breakpoint in malignant histiocytosis,” New England Journal of Medicine, vol. 314, no. 20, p. 1322, 1986. View at Google Scholar · View at Scopus
  53. R. Rimokh, J. P. Magaud, F. Berger et al., “A translocation involving a specific breakpoint (q35) on chromosome 5 is characteristic of anaplastic large cell lymphoma (‘Ki-1 lymphoma’),” British Journal of Haematology, vol. 71, no. 1, pp. 31–36, 1989. View at Google Scholar · View at Scopus
  54. M. M. Le Beau, M. A. Bitter, R. A. Larson et al., “The t(2;5)(p23;q35): a recurring chromosomal abnormality in Ki-1-positive anaplastic large cell lymphoma,” Leukemia, vol. 3, no. 12, pp. 866–870, 1989. View at Google Scholar · View at Scopus
  55. D. Y. Mason, C. Bastard, R. Rimokh et al., “CD30-positive large cell lymphomas ('Ki-1 lymphoma') are associated with a chromosomal translocation involving 5q35,” British Journal of Haematology, vol. 74, no. 2, pp. 161–168, 1990. View at Google Scholar · View at Scopus
  56. M. A. Bitter, W. A. Franklin, R. A. Larson et al., “Morphology in Ki-1(CD30)-positive non-Hodgkin's lymphoma is correlated with clinical features and the presence of a unique chromosomal abnormality, t(2;5)(p23;q35),” American Journal of Surgical Pathology, vol. 14, no. 4, pp. 305–316, 1990. View at Google Scholar · View at Scopus
  57. S. W. Morris, M. N. Kirstein, M. B. Valentine et al., “Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma,” Science, vol. 263, no. 5151, pp. 1281–1284, 1994. View at Google Scholar · View at Scopus
  58. R. H. Palmer, E. Vernersson, C. Grabbe, and B. Hallberg, “Anaplastic lymphoma kinase: signalling in development and disease,” Biochemical Journal, vol. 420, no. 3, pp. 345–361, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Shiota, J. Fujimoto, M. Takenaga et al., “Diagnosis of t(2;5)(p23;q35)-associated Ki-1 lymphoma with immunohistochemistry,” Blood, vol. 84, no. 11, pp. 3648–3652, 1994. View at Google Scholar · View at Scopus
  60. B. Falini, S. Pileri, P. L. Zinzani et al., “ALK+ lymphoma: clinico-pathological findings and outcome,” Blood, vol. 93, no. 8, pp. 2697–2706, 1999. View at Google Scholar · View at Scopus
  61. B. Falini and D. Y. Mason, “Proteins encoded by genes involved in chromosomal alterations in lymphoma and leukemia: clinical value of their detection by immunocytochemistry,” Blood, vol. 99, no. 2, pp. 409–426, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. B. Falini, I. Nicoletti, N. Bolli et al., “Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias,” Haematologica, vol. 92, no. 4, pp. 519–532, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Cools, I. Wlodarska, R. Somers et al., “Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor,” Genes Chromosomes and Cancer, vol. 34, no. 4, pp. 354–362, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. D. Stachurski, P. M. Miron, S. Al-Homsi et al., “Anaplastic lymphoma kinase-positive diffuse large B-cell lymphoma with a complex karyotype and cryptic 3 ALK gene insertion to chromosome 4 q22-24,” Human Pathology, vol. 38, no. 6, pp. 940–945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. L. Lamant, F. Meggetto, T. A. Saati et al., “High incidence of the t(2;5)(p23;q35) translocation in anaplastic large cell lymphoma and its lack of detection in Hodgkin's disease. Comparison of cytogenetic analysis, reverse transcriptase-polymerase chain reaction, and P-80 immunostaining,” Blood, vol. 87, no. 1, pp. 284–291, 1996. View at Google Scholar · View at Scopus
  66. I. Salaverria, S. Beà, A. Lopez-Guillermo et al., “Genomic profiling reveals different genetic aberrations in systemic ALK-positive and ALK-negative anaplastic large cell lymphomas,” British Journal of Haematology, vol. 140, no. 5, pp. 516–526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. M. A. Thompson, J. Stumph, S. E. Henrickson et al., “Differential gene expression in anaplastic lymphoma kinase-positive and anaplastic lymphoma kinase-negative anaplastic large cell lymphomas,” Human Pathology, vol. 36, no. 5, pp. 494–504, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. P. P. Piccaluga, C. Agostinelli, A. Califano et al., “Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets,” Journal of Clinical Investigation, vol. 117, no. 3, pp. 823–834, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Lamant, A. de Reyniès, M. M. Duplantier et al., “Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes,” Blood, vol. 109, no. 5, pp. 2156–2164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. R. Piva, L. Agnelli, E. Pellegrino et al., “Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms,” Journal of Clinical Oncology, vol. 28, no. 9, pp. 1583–1590, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Fraga, P. Brousset, D. Schlaifer et al., “Bone marrow involvement in anaplastic large cell lymphoma: immunohistochemical detection of minimal disease and its prognostic significance,” American Journal of Clinical Pathology, vol. 103, no. 1, pp. 82–89, 1995. View at Google Scholar · View at Scopus
  72. L. Mussolin, M. Pillon, E. S. d'Amore et al., “Prevalence and clinical implications of bone marrow involvement in pediatric anaplastic large cell lymphoma,” Leukemia, vol. 19, no. 9, pp. 1643–1647, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Kalinova, L. Krskova, H. Brizova, E. Kabickova, T. Kepak, and R. Kodet, “Quantitative PCR detection of NPM/ALK fusion gene and CD30 gene expression in patients with anaplastic large cell lymphoma—residual disease monitoring and a correlation with the disease status,” Leukemia Research, vol. 32, no. 1, pp. 25–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Shiota, S. Nakamura, R. Ichinohasama et al., “Anaplastic large cell lymphomas expressing the novel chimeric protein p80(NPM/ALK): a distinct clinicopathologic entity,” Blood, vol. 86, no. 5, pp. 1954–1960, 1995. View at Google Scholar · View at Scopus
  75. S. Ascani, P. L. Zinzani, F. Gherlinzoni et al., “Peripheral T-cell lymphomas. Clinico-pathologic study of 168 cases diagnosed according to the R.E.A.L. classification,” Annals of Oncology, vol. 8, no. 6, pp. 583–592, 1997. View at Publisher · View at Google Scholar · View at Scopus
  76. J. M. Vose, J. Armitage, and D. Weisenburger, “International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes,” Journal of Clinical Oncology, vol. 26, no. 25, pp. 4124–4130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. F. d'Amore, E. Jantunen, and T. Relander, “Hemopoietic stem cell transplantation in T-cell malignancies: who, when, and how?” Current Hematologic Malignancy Reports, vol. 4, no. 4, pp. 236–244, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. R. L. ten Berge, P. C. de Bruin, J. J. Oudejans, G. J. Ossenkoppele, P. van der Valk, and C. J. L. M. Meijer, “ALK-negative anaplastic large-cell lymphoma demonstrates similar poor prognosis to peripheral T-cell lymphoma, unspecified,” Histopathology, vol. 43, no. 5, pp. 462–469, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. W. Wan, M. S. Albom, L. Lu et al., “Anaplastic lymphoma kinase activity is essential for the proliferation and survival of anaplastic large-cell lymphoma cells,” Blood, vol. 107, no. 4, pp. 1617–1623, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. A. V. Galkin, J. S. Melnick, S. Kim et al., “Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 1, pp. 270–275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. H. M. Amin, L. J. Medeiros, Y. Ma et al., “Inhibition of JAK3 induces apoptosis and decreases anaplastic lymphoma kinase activity in anaplastic large cell lymphoma,” Oncogene, vol. 22, no. 35, pp. 5399–5407, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. H. M. Amin, T. J. McDonnell, Y. Ma et al., “Selective inhibition of STAT3 induces apoptosis and G cell cycle arrest in ALK-positive anaplastic large cell lymphoma,” Oncogene, vol. 23, no. 32, pp. 5426–5434, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. L. Qiu, R. Lai, Q. Lin et al., “Autocrine release of interleukin-9 promotes Jak3-dependent survival of ALK+ anaplastic large-cell lymphoma cells,” Blood, vol. 108, no. 7, pp. 2407–2415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. P. P. Piccaluga, C. Agostinelli, P. L. Zinzani, M. Baccarani, R. D. Favera, and S. A. Pileri, “Expression of platelet-derived growth factor receptor α in peripheral T-cell lymphoma not otherwise specified,” Lancet Oncology, vol. 6, no. 6, p. 440, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. P. P. Piccaluga, C. Agostinelli, A. Califano et al., “Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation,” Cancer Research, vol. 67, no. 22, pp. 10703–10710, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Huang, A. de Reyniès, L. de Leval et al., “Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type,” Blood, vol. 115, no. 6, pp. 1226–1237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. B. Falini, A. Bolognesi, L. Flenghi et al., “Response of refractory Hodgkin's disease to monoclonal anti-CD30 immunotoxin,” Lancet, vol. 339, no. 8803, pp. 1195–1196, 1992. View at Publisher · View at Google Scholar · View at Scopus
  88. P. L. Tazzari, A. Bolognesi, D. de Totero et al., “Ber-H2 (anti-CD30)-saporin immunotoxin: a new tool for the treatment of Hodgkin's disease and CD30+ lymphoma: in vitro evaluation,” British Journal of Haematology, vol. 81, no. 2, pp. 203–211, 1992. View at Google Scholar · View at Scopus
  89. L. Pasqualucci, M. Wasik, B. A. Teicher et al., “Antitumor activity of anti-CD30 immunotoxin (Ber-H2/saporin) in vitro and in severe combined immunodeficiency disease mice xenografted with human CD30+ anaplastic large-cell lymphoma,” Blood, vol. 85, no. 8, pp. 2139–2146, 1995. View at Google Scholar · View at Scopus
  90. W. Pfeifer, E. Levi, T. Petrogiannis-Haliotis, L. Lehmann, Z. Wang, and M. E. Kadin, “A murine xenograft model for human CD30+ anaplastic large cell lymphoma: successful growth inhibition with an anti-CD30 antibody (HeFi-1),” American Journal of Pathology, vol. 155, no. 4, pp. 1353–1359, 1999. View at Google Scholar · View at Scopus
  91. M. A. Fanale and A. Younes, “Monoclonal antibodies in the treatment of non-hodgkin's lymphoma,” Drugs, vol. 67, no. 3, pp. 333–350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. L. Ho, U. Aytac, L. C. Stephens et al., “In vitro and in vivo antitumor effect of the anti-CD26 monoclonal antibody 1F7 on human CD30+ anaplastic large cell T-cell lymphoma Karpas 299,” Clinical Cancer Research, vol. 7, no. 7, pp. 2031–2040, 2001. View at Google Scholar · View at Scopus