Table of Contents Author Guidelines Submit a Manuscript
Advances in Hematology
Volume 2011, Article ID 309237, 5 pages
http://dx.doi.org/10.1155/2011/309237
Review Article

PET Response-Guided Treatment of Hodgkin's Lymphoma: A Review of the Evidence and Active Clinical Trials

1Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
2Division of Hematology-Oncology, Department of Internal Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA

Received 1 July 2010; Revised 9 November 2010; Accepted 18 November 2010

Academic Editor: Stefan Faderl

Copyright © 2011 Paul Aridgides et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Brenner, A. Gondos, and D. Pulte, “Ongoing improvement in long-term survival of patients with Hodgkin disease at all ages and recent catch-up of older patients,” Blood, vol. 111, no. 6, pp. 2977–2983, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. B. Klimm and A. Engert, “Combined modality treatment of Hodgkin's lymphoma,” Cancer Journal, vol. 15, no. 2, pp. 143–149, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. A. Engert, V. Diehl, J. Franklin et al., “Escalated-dose BEACOPP in the treatment of patients with advanced-stage Hodgkin's lymphoma: 10 years of follow-up of the GHSG HD9 study,” Journal of Clinical Oncology, vol. 27, no. 27, pp. 4548–4554, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. C. J. Fabian, C. M. Mansfield, S. Dahlberg et al., “Low-dose involved field radiation after chemotherapy in advanced Hodgkin disease: a Southwest Oncology Group randomized study,” Annals of Internal Medicine, vol. 120, no. 11, pp. 903–912, 1994. View at Google Scholar · View at Scopus
  5. B. M. P. Aleman, J. M. M. Raemaekers, U. Tirelli et al., “Involved-field radiotherapy for advanced Hodgkin's lymphoma,” The New England Journal of Medicine, vol. 348, no. 24, pp. 2396–2406, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. S. J. Horning, R. T. Hoppe, S. Breslin, N. L. Bartlett, B. William Brown, and S. A. Rosenberg, “Stanford V and radiotherapy for locally extensive and advanced Hodgkin's disease: mature results of a prospective clinical trial,” Journal of Clinical Oncology, vol. 20, no. 3, pp. 630–637, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Allen-Auerbach and W. A. Weber, “Measuring response with FDG-PET: methodological aspects,” Oncologist, vol. 14, no. 4, pp. 369–377, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. O. S. Hoekstra, G. J. Ossenkoppele, R. Golding et al., “Early treatment response in malignant lymphoma, as determined by planar fluorine-18-fluorodeoxyglucose scintigraphy,” Journal of Nuclear Medicine, vol. 34, no. 10, pp. 1706–1710, 1993. View at Google Scholar · View at Scopus
  9. L. Kostakoglu, M. Coleman, J. P. Leonard, I. Kuji, H. Zoe, and S. J. Goldsmith, “Pet predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin's disease,” Journal of Nuclear Medicine, vol. 43, no. 8, pp. 1018–1027, 2002. View at Google Scholar
  10. T. Torizuka, F. Nakamura, T. Kanno et al., “Early therapy monitoring with FDG-PET in aggressive non-Hodgkin's lymphoma and Hodgkin's lymphoma,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 31, no. 1, pp. 22–28, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. Hutchings, N. G. Mikhaeel, P. A. Fields, T. Nunan, and A. R. Timothy, “Prognostic value of interim FDG-PET after two or three cycles of chemotherapy in Hodgkin lymphoma,” Annals of Oncology, vol. 16, no. 7, pp. 1160–1168, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. M. Hutchings, A. Loft, M. Hansen et al., “FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma,” Blood, vol. 107, no. 1, pp. 52–59, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. A. Gallamini, L. Rigacci, F. Merli et al., “The predictive value of positron emission tomography scanning performed after two courses of standard therapy on treatment outcome in advanced stage Hodgkin's disease,” Haematologica, vol. 91, no. 4, pp. 475–481, 2006. View at Google Scholar · View at Scopus
  14. A. Gallamini, M. Hutchings, L. Rigacci et al., “Early interim 2-[F18]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin's lymphoma: a report from a joint Italian-Danish study,” Journal of Clinical Oncology, vol. 25, no. 24, pp. 3746–3752, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. T. Terasawa, J. Lau, S. Bardet et al., “Fluorine-18-fluorodeoxyglucose positron emission tomography for interim response assessment of advanced-stage Hodgkin's lymphoma and diffuse large B-cell lymphoma: a systematic review,” Journal of Clinical Oncology, vol. 27, no. 11, pp. 1906–1914, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. E. J. Dann, R. Bar-Shalom, A. Tamir et al., “Risk-adapted BEACOPP regimen can reduce the cumulative dose of chemotherapy for standard and high-risk Hodgkin lymphoma with no impairment of outcome,” Blood, vol. 109, no. 3, pp. 905–909, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. A. Avigdor, S. Bulvik, I. Levi et al., “Two cycles of escalated BEACOPP followed by four cycles of ABVD utilizing early-interim PET/CT scan is an effective regimen for advanced high-risk Hodgkin's lymphoma,” Annals of Oncology, vol. 21, no. 1, pp. 126–132, 2010. View at Google Scholar · View at Scopus
  18. R. Advani, L. Maeda, P. Lavori et al., “Impact of positive positron emission tomography on prediction of freedom from progression after Stanford V chemotherapy in Hodgkin's disease,” Journal of Clinical Oncology, vol. 25, no. 25, pp. 3902–3907, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. D. J. Sher, P. M. Mauch, A. Van Den Abbeele, A. S. LaCasce, J. Czerminski, and A. K. Ng, “Prognostic significance of mid- and post-ABVD PET imaging in Hodgkin's lymphoma: the importance of involved-field radiotherapy,” Annals of Oncology, vol. 20, no. 11, pp. 1848–1853, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. C. Kobe, M. Dietlein, J. Franklin et al., “Positron emission tomography has a high negative predictive value for progression or early relapse for patients with residual disease after first-line chemotherapy in advanced-stage Hodgkin lymphoma,” Blood, vol. 112, no. 10, pp. 3989–3994, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. Picardi, A. De Renzo, F. Pane et al., “Randomized comparison of consolidation radiation versus observation in bulky Hodgkin's lymphoma with post-chemotherapy negative positron emission tomography scans,” Leukemia and Lymphoma, vol. 48, no. 9, pp. 1721–1727, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. M. P. Andre, O. Reman, M. Federico et al., “First report on the H10 EORTC/GELA/IIL randomized intergroup trial on early FDG-PET scan guided treatment adaptation versus standard combined modality treatment in patients with supra-diaphragmatic stage I/II Hodgkin's lymphoma, for the Groupe d’Etude Des Lymphomes De l’Adulte (GELA), European Organisation for the Research and Treatment of Cancer (EORTC) Lymphoma Group and the Intergruppo Italiano Linfomi (IIL),” in Proceedings of the 51st American Society Hematology Annual Meeting and Exposition, New Orleans, La, USA, December 2009, abstract no. 97.