Table of Contents Author Guidelines Submit a Manuscript
Advances in Hematology
Volume 2011 (2011), Article ID 430679, 6 pages
http://dx.doi.org/10.1155/2011/430679
Review Article

Interim FDG-PET Scan in Hodgkin's Lymphoma: Hopes and Caveats

1Department of Hematology, Grand Hôpital de Charleroi, Grand Rue, 3, 6000 Charleroi, Belgium
2Department of Nuclear Medecine, Université Catholique de Louvain, Cliniques Universitaires UCL de Mont Godinne, Yvoir, Belgium
3Department of Hematology, Université Catholique de Louvain, Cliniques Universitaires UCL de Mont Godinne, Yvoir, Belgium

Received 29 June 2010; Accepted 1 November 2010

Academic Editor: Emanuele Zucca

Copyright © 2011 M. André et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Fermé, H. Eghbali, J. H. Meerwaldt et al., “Chemotherapy plus involved-field radiation in early-stage Hodgkin's disease,” New England Journal of Medicine, vol. 357, no. 19, pp. 1916–1927, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. O. Favier, N. Heutte, A. Stamatoullas-Bastard et al., “Survival after Hodgkin lymphoma: causes of death and excess mortality in patients treated in 8 consecutive trials,” Cancer, vol. 115, pp. 1680–1691, 2009. View at Google Scholar
  3. D. J. Straus, C. S. Portlock, J. Qin et al., “Results of a prospective randomized clinical trial of doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) followed by radiation therapy (RT) versus ABVD alone for stages I, II, and IIIA nonbulky Hodgkin disease,” Blood, vol. 104, no. 12, pp. 3483–3489, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. R. M. Meyer, M. K. Gospodarowicz, J. M. Connors et al., “Randomized comparison of ABVD chemotherapywith a strategy that includes radiation therapy inpatients with limited-stage Hodgkin’s lymphoma: National Cancer Institute of Canada Clinical Trials Group and the Eastern Cooperative Oncology group,” Journal of Clinical Oncology, vol. 23, pp. 4623–4642, 2005. View at Google Scholar
  5. H. Eghbali, P. Brice, G. Y. Cremers et al., “Comparison of three radiation dose levels after EBVP regimen in favorable supradiaphragmatic clinical stages (CS) I-II Hodgkin’s Lymphoma (HL): preliminary results of the EORTC-GELA H9-F trial,” Blood, vol. 106, article 814, 2005. View at Google Scholar
  6. A. Engert, A. Pluetschow, H. T. Eicht et al., “Reduced intensity treatment in Hodgkin's lymphoma,” The New England Journal of Medicine, vol. 343, pp. 640–652, 2010. View at Google Scholar
  7. H. T. Eich, V. Diehl, H. Goergen et al., “Intensified chemotherapy and dose-reduced involved-field radiotherapy in patients with early unfavourable Hodgkin lymphoma: final analysis of the German Hodgkin Study Group HD11 trial,” Journal of Clinical Oncology, vol. 28, pp. 4199–4206, 2010. View at Google Scholar
  8. A. Engert, V. Diehl, J. Franklin et al., “Escalated-dose BEACOPP in the treatment of patients with advanced-stage Hodgkin's lymphoma: 10 years of follow-up of the GHSG HD9 study,” Journal of Clinical Oncology, vol. 27, no. 27, pp. 4548–4554, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. M. Federico, S. Luminari, E. Iannitto et al., “ABVD compared with BEACOPP compared with CEC for the initial treatment of patients with advanced hodgkin's lymphoma: results from the HD2000 gruppo italiano Per lo studio dei linfomi trial,” Journal of Clinical Oncology, vol. 27, no. 5, pp. 805–811, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. L. Specht, “2-[18F]fluoro-2-deoxyglucose positron-emission tomography in staging, response evaluation, and treatment planning of lymphomas,” Seminars in Radiation Oncology, vol. 17, no. 3, pp. 190–197, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. Allen-Auerbach, A. Quon, W. A. Weber et al., “Comparison between 2-deoxy-2-[F]fluoro-D-glucose positron emission tomography and positron emission tomography/computed tomography hardware fusion for staging of patients with lymphoma,” Molecular Imaging and Biology, vol. 6, no. 6, pp. 411–416, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. N. G. Schaefer, T. F. Hany, C. Taverna et al., “Non-Hodgkin lymphoma and Hodgkin disease: coregistered FDG PET and CT at staging and restaging—do we need contrast-enhanced CT?” Radiology, vol. 232, no. 3, pp. 823–829, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. R. L. Elstrom, J. P. Leonard, M. Coleman, and R. K. J. Brown, “Combined PET and low-dose, noncontrast CT scanning obviates the need for additional diagnostic contrast-enhanced CT scans in patients undergoing staging or restaging for lymphoma,” Annals of Oncology, vol. 19, no. 10, pp. 1770–1773, 2008. View at Publisher · View at Google Scholar · View at PubMed
  14. P. Seam, M. E. Juweid, and B. D. Cheson, “The role of FDG-PET scans in patients with lymphoma,” Blood, vol. 110, no. 10, pp. 3507–3516, 2007. View at Publisher · View at Google Scholar · View at PubMed
  15. M. Hutchings, A. Loft, M. Hansen, A. K. Berthelsen, and L. Specht, “Clinical impact of FDG-PET/CT in the planning of radiotherapy for early-stage Hodgkin lymphoma,” European Journal of Haematology, vol. 78, no. 3, pp. 206–212, 2007. View at Publisher · View at Google Scholar · View at PubMed
  16. P. Pommier, S. Dussart, T. Girinsky et al., “Impact of 18F-fluoro-2-deoxyglucose positron emission tomography on treatment strategy and radiotherapy planning for stage I-II Hodgkin disease: a prospective multicenter study,” International Journal of Radiation Oncology, Biology, Physics. In press. View at Publisher · View at Google Scholar · View at PubMed
  17. M. Hutchings, A. Loft, M. Hansen et al., “FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma,” Blood, vol. 107, no. 1, pp. 52–59, 2006. View at Publisher · View at Google Scholar · View at PubMed
  18. A. Gallamini, L. Rigacci, F. Merli et al., “The predictive value of positron emission tomography scanning performed after two courses of standard therapy on treatment outcome in advanced stage Hodgkin's disease,” Haematologica, vol. 91, no. 4, pp. 475–481, 2006. View at Google Scholar
  19. A. Gallamini, M. Hutchings, L. Rigacci et al., “Early interim 2-[F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin's lymphoma: a report from a joint Italian-Danish study,” Journal of Clinical Oncology, vol. 25, no. 24, pp. 3746–3752, 2007. View at Publisher · View at Google Scholar · View at PubMed
  20. L. Kostakoglu, S. J. Goldsmith, J. P. Leonard et al., “FDG-PET after 1 cycle of therapy predicts outcome in diffuse large cell lymphoma and classic Hodgkin disease,” Cancer, vol. 107, no. 11, pp. 2678–2687, 2006. View at Publisher · View at Google Scholar · View at PubMed
  21. T. Terasawa, J. Lau, S. Bardet et al., “Fluorine-18-fluorodeoxyglucose positron emission tomography for interim response assessment of advanced-stage Hodgkin's lymphoma and diffuse large B-cell lymphoma: a systematic review,” Journal of Clinical Oncology, vol. 27, no. 11, pp. 1906–1914, 2009. View at Publisher · View at Google Scholar · View at PubMed
  22. M. Hutchings, N. G. Mikhaeel, P. A. Fields, T. Nunan, and A. R. Timothy, “Prognostic value of interim FDG-PET after two or three cycles of chemotherapy in Hodgkin lymphoma,” Annals of Oncology, vol. 16, no. 7, pp. 1160–1168, 2005. View at Publisher · View at Google Scholar · View at PubMed
  23. D. J. Sher, P. M. Mauch, A. Van Den Abbeele, A. S. LaCasce, J. Czerminski, and A. K. Ng, “Prognostic significance of mid- and post-ABVD PET imaging in Hodgkin's lymphoma: the importance of involved-field radiotherapy,” Annals of Oncology, vol. 20, no. 11, pp. 1848–1853, 2009. View at Publisher · View at Google Scholar · View at PubMed
  24. A. Avigdor, S. Bulvik, I. Levi et al., “Two cycles of escalated BEACOPP followed by four cycles of ABVD utilizing early-interim PET/CT scan is an effective regimen for advanced high-risk Hodgkin's lymphoma,” Annals of Oncology, vol. 21, no. 1, pp. 126–132, 2010. View at Google Scholar
  25. A. Gallamini, S. Viviaru, V Bonfante et al., “Early interim FDG-PET during intensified BEACOPP therapy for advanced stage Hodgkin disease shows a lower predictive value than during ABVD,” Haematologica, vol. 92, pp. 143–144, 2007. View at Google Scholar
  26. S. F. Barrington, W. Qian, E. J. Somer et al., “Concordance between four European centres of PET reporting criteria designed for use in multicentre trials in Hodgkin lymphoma,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, supplement 2, p. S252, 2009. View at Publisher · View at Google Scholar · View at PubMed
  27. R. Boellaard, W. J. G. Oyen, C. J. Hoekstra et al., “The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 12, pp. 2320–2333, 2008. View at Publisher · View at Google Scholar · View at PubMed
  28. R. Boellaard, M. J. O'Doherty, W. A. Weber et al., “FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 1, pp. 181–200, 2010. View at Publisher · View at Google Scholar · View at PubMed
  29. M. E. Juweid, S. Stroobants, O. S. Hoekstra et al., “Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of international harmonization project in lymphoma,” Journal of Clinical Oncology, vol. 25, no. 5, pp. 571–578, 2007. View at Publisher · View at Google Scholar · View at PubMed
  30. L. K. Shankar, J. M. Hoffman, S. Bacharach et al., “Consensus recommendations for the use of F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials,” Journal of Nuclear Medicine, vol. 47, no. 6, pp. 1059–1066, 2006. View at Google Scholar
  31. C. Lin, E. Itti, C. Haioun et al., “Early F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis,” Journal of Nuclear Medicine, vol. 48, no. 10, pp. 1626–1632, 2007. View at Publisher · View at Google Scholar · View at PubMed
  32. M. Fabel, H. von Tengg-Kobligk, F. L. Giesel et al., “Semi-automated volumetric analysis of lymph node metastases in patients with malignant melanoma stage III/IV-A feasibility study,” European Radiology, vol. 18, no. 6, pp. 1114–1122, 2008. View at Publisher · View at Google Scholar · View at PubMed
  33. M. Meignan, A. Gallamini, M. Meignan, A. Gallamini, and C. Haioun, “Report on the first international workshop on interim-PET-scan in lymphoma,” Leukemia & Lymphoma, vol. 50, no. 8, pp. 1257–1260, 2009. View at Google Scholar
  34. E. J. Dann, R. Bar-Shalom, A. Tamir et al., “A functional dynamic scoring model to elucidate the significanceof post-induction interim fluorine-18-fluorodeoxyglucose positron emission tomography findings in patients with hodgkin's lymphoma,” Haematologica, vol. 95, no. 7, pp. 1198–1206, 2010. View at Publisher · View at Google Scholar · View at PubMed
  35. J. M. Zijlstra, E. F. Comans, A. Van Lingen et al., “FDG PET in lymphoma: the need for standardization of interpretation. An observer variation study,” Nuclear Medicine Communications, vol. 28, no. 10, pp. 798–803, 2007. View at Publisher · View at Google Scholar · View at PubMed
  36. M. Meignan, E. Itti, S. Bardet et al., “Development and application of a real-time on-line blinded independent central review of interim pet scans to determine treatment allocation in lymphoma trials,” Journal of Clinical Oncology, vol. 27, no. 16, pp. 2739–2741, 2009. View at Publisher · View at Google Scholar · View at PubMed
  37. S. F. Barrington, W. Qian, E. J. Somer et al., “Concordance between four European centres of PET reporting criteria designed for use in multicentre trials in Hodgkin lymphoma,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, pp. 1824–1833, 2010. View at Publisher · View at Google Scholar · View at PubMed