Table of Contents Author Guidelines Submit a Manuscript
Advances in Hematology
Volume 2011, Article ID 578163, 6 pages
http://dx.doi.org/10.1155/2011/578163
Review Article

Human Immunodeficiency Virus Infection and Hodgkin's Lymphoma in South Africa: An Emerging Problem

Division of Clinical Haematology, Department of Medicine, Chris Hani Baragwanath Hospital and the University of the Witwatersrand, P.O. Box 96092, Brixton, Johannesburg 2019, South Africa

Received 11 August 2010; Accepted 23 December 2010

Academic Editor: Myriam Labopin

Copyright © 2011 Moosa Patel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. A. Hessol, M. H. Katz, J. Y. Liu, S. P. Buchbinder, C. J. Rubino, and S. D. Holmberg, “Increased incidence of Hodgkin disease in homosexual men with HIV infection,” Annals of Internal Medicine, vol. 117, no. 4, pp. 309–311, 1992. View at Google Scholar · View at Scopus
  2. D. W. Lyter, J. Bryant, R. Thackeray, C. R. Rinaldo, and L. A. Kingsley, “Incidence of human immunodeficiency virus-related and nonrelated malignancies in a large cohort of homosexual men,” Journal of Clinical Oncology, vol. 13, no. 10, pp. 2540–2546, 1995. View at Google Scholar · View at Scopus
  3. J. J. Goedert, T. R. Coté, P. Virgo et al., “Spectrum of AIDS-associated malignant disorders,” The Lancet, vol. 351, no. 9119, pp. 1833–1839, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Herida, M. Mary-Krause, R. Kaphan et al., “Incidence of non-AIDS-defining cancers before and during the highly active antiretroviral therapy era in a cohort of human immunodeficiency virus-infected patients,” Journal of Clinical Oncology, vol. 21, no. 18, pp. 3447–3453, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. A. Carbone, A. Gloghini, D. Serraino, and M. Spina, “HIV-associated Hodgkin lymphoma,” Current Opinion in HIV and AIDS, vol. 4, no. 1, pp. 3–10, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. U. Tirelli, D. Errante, R. Dolcetti et al., “Hodgkin's disease and human immunodeficiency virus infection: clinicopathologic and virologic features of 114 patients from the Italian Cooperative group on AIDS and Tumors,” Journal of Clinical Oncology, vol. 13, no. 7, pp. 1758–1767, 1995. View at Google Scholar · View at Scopus
  7. N. Crum-Cianflone, K. H. Hullsiek, V. Marconi et al., “Trends in the incidence of cancers among HIV-infected persons and the impact of antiretroviral therapy: a 20-year cohort study,” AIDS, vol. 23, no. 1, pp. 41–50, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. UNAIDS, Report on the Global AIDS Epidemic, UNAIDS, Geneva, Switzerland, 2008.
  9. F. Sitas, W. R. Bezwoda, V. Levin et al., “Association between human immunodeficiency virus type 1 infection and cancer in the black population of Johannesburg and Soweto, South Africa,” British Journal of Cancer, vol. 75, no. 11, pp. 1704–1707, 1997. View at Google Scholar · View at Scopus
  10. F. Sitas, R. Pacella-Norman, H. Carrara et al., “The spectrum of HIV-1 related cancers in South Africa,” International Journal of Cancer, vol. 88, no. 3, pp. 489–492, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Stein, M. I. Urban, D. O'Connell et al., “The spectrum of human immunodeficiency virus-associated cancers in a South African black population: results from a case-control study, 1995–2004,” International Journal of Cancer, vol. 122, no. 10, pp. 2260–2265, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. M. Patel, V. Philip, D. Turton et al., “The impact of HIV on non-Hodgkin's lymphoma at Chris Hani Baragwanath Hospital,” Haematologica, vol. 92, no. s1, p. 273, 2007. View at Google Scholar
  13. M. Patel, “Haematology,” in Baragwanath Hospital 50 years—A Medical Miscellany, K. Huddle and A. Dubb, Eds., pp. 173–190, Ultra Litho, 1994. View at Google Scholar
  14. S. Takegawa, Z. Jin, T. Nakayama et al., “Expression of CCL17 and CCL22 by latent membrane protein 1-positive tumor cells in age-related Epstein-Barr virus-associated B-cell lymphoproliferative disorder,” Cancer Science, vol. 99, no. 2, pp. 296–302, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. M. Niens, L. Visser, I. M. Nolte et al., “Serum chemokine levels in Hodgkin lymphoma patients: highly increased levels of CCL17 and CCL22,” British Journal of Haematology, vol. 140, no. 5, pp. 527–536, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. E. Maggio, A. van den Berg, A. Diepstra, J. Kluiver, L. Visser, and S. Poppema, “Chemokines, cytokines and their receptors in Hodgkin's lymphoma cell lines and tissues,” Annals of Oncology, vol. 13, supplement 1, pp. 52–56, 2002. View at Google Scholar · View at Scopus
  17. S. Poppema, R. Lai, L. Visser, and X. J. Yan, “CD45 (leucocyte common antigen) expression in T and B lymphocyte subsets,” Leukemia and Lymphoma, vol. 20, no. 3-4, pp. 217–222, 1996. View at Google Scholar · View at Scopus
  18. L. S. Young and A. B. Rickinson, “Epstein-Barr virus: 40 years on,” Nature Reviews Cancer, vol. 4, no. 10, pp. 757–768, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. A. Carbone, A. Gloghini, L. M. Larocca et al., “Human immunodeficiency virus-associated Hodgkin's disease derives from post-germinal center B cells,” Blood, vol. 93, no. 7, pp. 2319–2326, 1999. View at Google Scholar · View at Scopus
  20. A. Carbone, A. Gloghini, and G. Dotti, “EBV-associated lymphoproliferative disorders: classification and treatment,” Oncologist, vol. 13, no. 5, pp. 577–585, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. T. Nakayama, K. Hieshima, D. Nagakubo et al., “Selective induction of Th2-attracting chemokines CCL17 and CCL22 in human B cells by latent membrane protein 1 of Epstein-Barr virus,” Journal of Virology, vol. 78, no. 4, pp. 1665–1674, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. U. Klein and R. Dalla-Favera, “Germinal centres: role in B-cell physiology and malignancy,” Nature Reviews Immunology, vol. 8, no. 1, pp. 22–33, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. A. Carbone, A. Gloghini, L. M. Larocca et al., “Expression profile of MUM1/IRF4, BCL-6, and CD138/syndecan-1 defines novel histogenetic subsets of human immunodeficiency virus-related lymphomas,” Blood, vol. 97, no. 3, pp. 744–751, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Mancao and W. Hammerschmidt, “Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival,” Blood, vol. 110, no. 10, pp. 3715–3721, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. U. Tirelli, E. Vaccher, D. Serraino et al., “Comparison of presenting clinical and laboratory findings of patients with persistent generalized lymphadenopathy (PGL) syndrome and malignant lymphoma (ML),” Haematologica, vol. 72, no. 6, pp. 563–565, 1987. View at Google Scholar · View at Scopus
  26. J. M. Andrieu, S. Roithmann, J. M. Tourani et al., “Hodgkin's disease during HIV1 infection: the French registry experience,” Annals of Oncology, vol. 4, no. 8, pp. 635–641, 1993. View at Google Scholar · View at Scopus
  27. R. Rubio, “Hodgkin's disease associated with human immunodeficiency virus infection: a clinical study of 46 cases,” Cancer, vol. 73, no. 9, pp. 2400–2407, 1994. View at Google Scholar · View at Scopus
  28. A. García-Noblejas, S. Nieto, R. Liberal et al., “Intracerebral Hodgkin's lymphoma in a patient with human immunodeficiency virus,” Haematologica, vol. 92, no. 6, pp. e72–e73, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Vaccher, M. Spina, R. Talamini et al., “Improvement of systemic human immunodeficiency virus-related non-Hodgkin lymphoma outcome in the era of highly active antiretroviral therapy,” Clinical Infectious Diseases, vol. 37, no. 11, pp. 1556–1564, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. E. Chimienti, M. Spina, R. Gastaldi et al., “Clinical characteristics and outcome of 290 patients (pts) with Hodgkin's disease and HIV infection (HD-HIV) in pre and HAART (highly active antiretroviral therapy) era,” Annals of Oncology, vol. 19, p. iv136, 2008, abstract 168. View at Google Scholar
  31. J. Berenguer, P. Miralles, J. M. Ribera et al., “Characteristics and outcome of AIDS-related Hodgkin lymphoma before and after the introduction of highly active antiretroviral therapy,” Journal of Acquired Immune Deficiency Syndromes, vol. 47, no. 4, pp. 422–428, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. L. D. R. Thompson, M. S. I. Fisher, W. S. Chu, A. Nelson, and S. L. Abbondanzo, “HIV-associated Hodgkin lymphoma: a clinicopathologic and immunophenotypic study of 45 cases,” American Journal of Clinical Pathology, vol. 121, no. 5, pp. 727–738, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. R. J. Biggar, E. S. Jaffe, J. J. Goedert, A. Chaturvedi, R. Pfeiffer, and E. A. Engels, “Hodgkin lymphoma and immunodeficiency in persons with HIV/AIDS,” Blood, vol. 108, no. 12, pp. 3786–3791, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. A. M. Levine, P. Li, T. Cheung et al., “Chemotherapy consisting of doxorubicin, bleomycin, vinblastine, and dacarbazine with granulocyte-colony-stimulating factor in HIV-infected patients with newly diagnosed Hodgkin's disease: a prospective, multi-institutional AIDS Clinical Trials Group Study (ACTG 149),” Journal of Acquired Immune Deficiency Syndromes, vol. 24, no. 5, pp. 444–450, 2000. View at Google Scholar · View at Scopus
  35. B. Xicoy, J. M. Ribera, P. Miralles et al., “Results of treatment with doxorubicin, bleomycin, vinblastine and dacarbazine and highly active antiretroviral therapy in advanced stage, human immunodeficiency virus-related Hodgkin's lymphoma,” Haematologica, vol. 92, no. 2, pp. 191–198, 2007. View at Google Scholar · View at Scopus
  36. M. Hentrich, L. Maretta, K. U. Chow et al., “Highly active antiretroviral therapy (HAART) improves survival in HIV-associated Hodgkin's disease: results of a multicenter study,” Annals of Oncology, vol. 17, no. 6, pp. 914–919, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. M. Spina, G. Rossi, A. Antinori et al., “VEBEP regimen and highly active antiretroviral therapy (HAART) in patients (pts) with HD and HIV infection (HD-HIV),” Annals of Oncology, vol. 19, p. iv152, 2008, abstract 227. View at Google Scholar
  38. P. Hartmann, U. Rehwald, B. Salzberger et al., “BEACOPP therapeutic regimen for patients with Hodgkin's disease and HIV infection,” Annals of Oncology, vol. 14, no. 10, pp. 1562–1569, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Spina, J. Gabarre, G. Rossi et al., “Stanford V regimen and concomitant HAART in 59 patients with Hodgkin disease and HIV infection,” Blood, vol. 100, no. 6, pp. 1984–1988, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. A. Krishnan, A. Molina, J. Zaia et al., “Durable remissions with autologous stem cell transplantation for high-risk HIV-associated lymphomas,” Blood, vol. 105, no. 2, pp. 874–878, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. T. R. Spitzer, R. F. Ambinder, J. Y. Lee et al., “Dose-reduced busulfan, cyclophosphamide, and autologous stem cell transplantation for human immunodeficiency virus-associated lymphoma: AIDS Malignancy Consortium Study 020,” Biology of Blood and Marrow Transplantation, vol. 14, no. 1, pp. 59–66, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. J. M. Connors, “Challenging problems: coincident pregnancy, HIV infection, and older age,” Hematology, pp. 334–339, 2008. View at Google Scholar · View at Scopus