Table of Contents Author Guidelines Submit a Manuscript
Erratum

An erratum for this article has been published. To view the erratum, please click here.

Advances in Hematology
Volume 2012, Article ID 697691, 8 pages
http://dx.doi.org/10.1155/2012/697691
Research Article

DNMT3A Mutations in Patients with Acute Myeloid Leukemia in South Brazil

1Cellular Therapy Center, Center for Experimental Research, Hospital de Clinicas de Porto Alegre, 90035-903 Porto Alegre, RS, Brazil
2Postgraduate Course of Medical Sciences, Federal University of Rio Grande do Sul, 90035-903 Porto Alegre, RS, Brazil
3Gene Therapy Center, Center for Experimental Research, Hospital de Clinicas de Porto Alegre, 90035-903 Porto Alegre, RS, Brazil
4Pediatric Hematology and Oncology Program, Research Center, Instituto Nacional de Câncer, 20230-130 Rio de Janeiro, RJ, Brazil
5Hematology and Bone Marrow Transplantation, Hospital de Clinicas de Porto Alegre, 90035-903 Porto Alegre, RS, Brazil
6Laboratory of Cell Culture and Molecular Analysis of Hematopoietic Cells, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, 2350 Ramiro Barcelos, 90035-903 Porto Alegre, RS, Brazil

Received 18 July 2012; Revised 1 October 2012; Accepted 1 October 2012

Academic Editor: Helen A. Papadaki

Copyright © 2012 Annelise Pezzi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Fröhling, C. Scholl, D. G. Gilliland, and R. L. Levine, “Genetics of myeloid malignancies: pathogenetic and clinical implications,” Journal of Clinical Oncology, vol. 23, no. 26, pp. 6285–6295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. D. Brunning and, “Classification of acute leukemias,” Seminars in Diagnostic Pathology, vol. 20, pp. 142–153, 2003. View at Google Scholar
  3. T. Szczepanski, V. H. J. van Velden, and J. J. M. van Dongen, “Classification systems for acute and chronic leukemias,” Best Practice & Research Clinical Haematology, vol. 16, pp. 561–582, 2003. View at Google Scholar
  4. T. Peter and H. Andrew, “The epigenomics revolution in myelodysplasia: a clinic-pathological perspective,” Hematopathology, vol. 43, pp. 536–546, 2011. View at Google Scholar
  5. C. Plass, C. Oakes, W. Blum, and G. Marcucci, “Epigenetics in acute myeloid leukemia,” Seminars in Oncology, vol. 35, no. 4, pp. 378–387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. O. Galm, S. Wilop, C. Lüders et al., “Clinical implications of aberrant DNA methylation patterns in acute myelogenous leukemia,” Annals of Hematology, Supplement, vol. 84, no. 13, pp. 39–46, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Boultwood and J. S. Wainscoat, “Gene silencing by DNA methylation in haematological malignancies,” British Journal of Haematology, vol. 138, no. 1, pp. 3–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. P. A. Jones and S. B. Baylin, “The epigenomics of cancer,” Cell, vol. 128, no. 4, pp. 683–692, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. T. J. Ley, L. Ding, M. J. Walter et al., “DNMT3A mutations in acute myeloid leukemia,” The New England Journal of Medicine, vol. 363, no. 25, pp. 2424–2433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Yamashita, J. Yuan, I. Suetake et al., “Array-based genomic resequencing of human leukemia,” Oncogene, vol. 29, no. 25, pp. 3723–3731, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. X. J. Yan, J. Xu, Z. H. Gu et al., “Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia,” Nature Genetics, vol. 43, no. 4, pp. 309–315, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. A. F. Ribeiro, M. Pratcorona, and C. Erpelinck-Verschueren, “Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia,” Blood, vol. 119, pp. 5824–5831, 2012. View at Google Scholar
  13. J. P. Patel, M. Gönen, and M. E. Figueroa, “Prognostic relevance of integrated genetic profiling in acute myeloid leukemia,” The New England Journal of Medicine, vol. 366, no. 12, pp. 1079–1089, 2012. View at Google Scholar
  14. F. Thol, F. Damm, A. Lüdeking et al., “Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia,” Journal of Clinical Oncology, vol. 29, no. 21, pp. 2889–2896, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Marcucci, K. H. Metzeler, S. Schwind et al., “Age related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid leukemia,” Journal of Clinical Oncology, vol. 30, no. 7, pp. 742–750, 2012. View at Google Scholar
  16. A. Renneville, N. Boissel, O. Nibourel et al., “Prognostic significance of DNA methyltransferase 3A mutations in cytogenetically normal acute myeloid leukemia: a study by the Acute Leukemia French Association,” Leukemia, vol. 26, no. 6, pp. 1247–1254, 2011. View at Google Scholar
  17. S. H. Swerdlow, E. Campo, N. L. Harris et al., WHO Classification of Tumours of Hematopoietic and Lymphoid Tissues, International Agency for Research on Cancer (IARC), Lyon, France, 2008.
  18. J. J. M. Van Dongen, E. A. Macintyre, J. A. Gabert et al., “Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia,” Leukemia, vol. 13, no. 12, pp. 1901–1928, 1999. View at Google Scholar · View at Scopus
  19. G. Mitterbauer, C. Zimmer, C. Fonatsch et al., “Monitoring of minimal residual leukemia in patients with MLL-AF9 positive acute myeloid leukemia by RT-PCR,” Leukemia, vol. 13, no. 10, pp. 1519–1524, 1999. View at Google Scholar · View at Scopus
  20. R. H. Jácomo, R. A. M. Melo, F. R. Souto et al., “Clinical features and outcomes of 134 Brazilians with acute promyelocytic leukemia who received ATRA and anthracyclines,” Haematologica, vol. 92, no. 10, pp. 1431–1432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Capra, L. Vilella, W. V. Pereira et al., “Estimated number of cases, regional distribution and survival of patients diagnosed with acute myeloid leukemia between 1996 and 2000 in Rio Grande do Sul, Brazil,” Leukemia and Lymphoma, vol. 48, no. 12, pp. 2381–2386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. K. J. Phekoo, M. A. Richards, H. Møller, and S. A. Schey, “The incidence and outcome of myeloid malignancies in 2,112 adult patients in south East-England,” Haematologica, vol. 91, no. 10, pp. 1400–1404, 2006. View at Google Scholar · View at Scopus
  23. D. Douer, S. Preston-Martin, E. Chang, P. W. Nichols, K. J. Watkins, and A. M. Levine, “High frequency of acute promyelocytic leukemia among Latinos with acute myeloid leukemia,” Blood, vol. 87, no. 1, pp. 308–313, 1996. View at Google Scholar · View at Scopus
  24. C. Schoch, D. Haase, T. Haferlach et al., “Fifty-one patients with acute myeloid leukemia and translocation t(8;21)(q22 q22): an additional deletion in 9q is an adverse prognostic factor,” Leukemia, vol. 10, no. 8, pp. 1288–1295, 1996. View at Google Scholar · View at Scopus
  25. M. F. Chauffaille, D. Borri, and S. R. Martins, “Leucemia mielóide aguda t(8;21): freqüência em pacientes brasileiros,” Revista Brasileira de Hematologia e Hemoterapia, vol. 26, no. 2, pp. 99–103, 2004. View at Google Scholar
  26. D. A. Arber, R. D. Brunning, M. M. Le Beau, S. H. Swerdlow, E. Campo, and N. L. Harris, “Acute myeloid leukaemia with recurrent genetic abnormalities,” in WHO classification of tumours of haematopoietic and lymphoid tissues, pp. 110–23, IARC Press, Lyon, 4th edition, 2008. View at Google Scholar
  27. C. Schoch and T. Haferlach, “Cytogenetics in acute myeloid leukemia,” Current Oncology Reports, vol. 4, no. 5, pp. 390–397, 2002. View at Google Scholar · View at Scopus
  28. D. Grimwade, H. Walker, G. Harrison et al., “The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial,” Blood, vol. 98, no. 5, pp. 1312–1320, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. A. T. Look, “Oncogenic transcription factors in the human acute leukemias,” Science, vol. 278, no. 5340, pp. 1059–1064, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Stegelmann, L. Bullinger, R. F. Schlenk et al., “DNMT3A mutations in myeloproliferative neoplasms,” Leukemia, vol. 25, no. 7, pp. 1217–1219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Marková, P. Michková, and K. Burèková, “Prognostic impact of DNMT3A mutations in patients with intermediate cytogenetic risk profile acute myeloid leukemia,” European Journal of Haematology, vol. 88, no. 2, pp. 10–128, 2012. View at Publisher · View at Google Scholar
  32. F. Thol, C. Winschel, A. Lüdeking et al., “Rare occurrence of DNMT3A mutations in myelodysplastic syndromes,” Haematologica, vol. 96, no. 12, pp. 1870–1873, 2011. View at Google Scholar
  33. J. Lin, Y. Dm, J. Qian et al., “Recurrent DNMT3A R882 mutations in Chinese patients with acute myeloid leukemia and myelodysplastic syndrome,” PLoS ONE, vol. 6, Article ID e26906, p. 10, 2011. View at Publisher · View at Google Scholar
  34. C. Thiede, “Mutant DNMT3A: teaming up to transform,” Blood, vol. 119, no. 24, Article ID 56157, 2012. View at Google Scholar