Table of Contents Author Guidelines Submit a Manuscript
Advances in Hematology
Volume 2012, Article ID 842945, 11 pages
http://dx.doi.org/10.1155/2012/842945
Review Article

Biological Activity of Lenalidomide and Its Underlying Therapeutic Effects in Multiple Myeloma

Department of Oncohematology, University of Perugia, Santa Maria Hospital, 05100 Terni, Italy

Received 16 February 2012; Revised 1 May 2012; Accepted 2 May 2012

Academic Editor: Agostino Cortelezzi

Copyright © 2012 Roberta Martiniani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. G. Corral and G. Kaplan, “Immunomodulation by thalidomide and thalidomide analogues,” Annals of the Rheumatic Diseases, vol. 58, supplement 1, pp. I107–I113, 1999. View at Google Scholar · View at Scopus
  2. A. List, S. Kurtin, D. J. Roe et al., “Efficacy of lenalidomide in myelodysplastic syndromes,” The New England Journal of Medicine, vol. 352, no. 6, pp. 549–557, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. A. F. List, “Lenalidomide: from bench to bedside (part 1),” Cancer Control, vol. 13, supplement 2-3, 2006. View at Google Scholar · View at Scopus
  4. A. F. List, A. F. Baker, S. Green, and W. Bellamy, “Lenalidomide: targeted anemia therapy for myelodysplastic syndromes,” Cancer Control, vol. 13, supplement 4–11, 2006. View at Google Scholar · View at Scopus
  5. A. Raza, J. A. Reeves, E. J. Feldman et al., “Phase 2 study of lenalidomide in transfusion-dependent, low-risk, and intermediate-1-risk myelodysplastic syndromes with karyotypes other than deletion 5q,” Blood, vol. 111, no. 1, pp. 86–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. List, G. Dewald, J. Bennett et al., “Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion,” The New England Journal of Medicine, vol. 355, no. 14, pp. 1456–1465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. D. Tariman, “Lenalidomide: a new agent for patients with relapsed or refractory multiple myeloma,” Clinical Journal of Oncology Nursing, vol. 11, no. 4, pp. 569–574, 2007. View at Google Scholar · View at Scopus
  8. D. M. Weber, C. Chen, R. Niesvizky et al., “Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America,” The New England Journal of Medicine, vol. 357, no. 21, pp. 2133–2142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Baz, E. Walker, M. A. Karam et al., “Lenalidomide and pegylated liposomal doxorubicin-based chemotherapy for relapsed or refractory multiple myeloma: safety and efficacy,” Annals of Oncology, vol. 17, no. 12, pp. 1766–1771, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Niesvizky, D. S. Jayabalan, P. J. Christos et al., “BiRD (Biaxin [clarithromycin]/revlimid [lenalidomide]/dexamethasone) combination therapy results in high complete- and overall-response rates in treatment-naive symptomatic multiple myeloma,” Blood, vol. 111, no. 3, pp. 1101–1109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. V. Rajkumar, S. Hayman, G. S. Nowakowski et al., “Combination therapy with thalidomide and dexamethasone in patients with newly diagnosed multiple myeloma not undergoing upfront autologous stem cell transplantation: a phase II trial,” Haematologica, vol. 90, no. 12, pp. 1650–1654, 2005. View at Google Scholar · View at Scopus
  12. A. Palumbo, P. Falco, P. Corradini et al., “Melphalan, prednisone, and lenalidomide treatment for newly diagnosed myeloma: a report from the GIMEMA—Italian Multiple Myeloma Network,” Journal of Clinical Oncology, vol. 25, no. 28, pp. 4459–4465, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Chanan-Khan, K. C. Miller, L. Musial et al., “Clinical efficacy of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia: results of a phase II study,” Journal of Clinical Oncology, vol. 24, no. 34, pp. 5343–5349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Chanan-Khan and C. W. Porter, “Immunomodulating drugs for chronic lymphocytic leukaemia,” Lancet Oncology, vol. 7, no. 6, pp. 480–488, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. G. Ramsay, A. J. Johnson, A. M. Lee et al., “Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug,” The Journal of Clinical Investigation, vol. 118, no. 7, pp. 2427–2437, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Ferrajoli, B. N. Lee, E. J. Schlette et al., “Lenalidomide induces complete and partial remissions in patients with relapsed and refractory chronic lymphocytic leukemia,” Blood, vol. 111, no. 11, pp. 5291–5297, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Dispenzieri, M. Q. Lacy, S. R. Zeldenrust et al., “The activity of lenalidomide with or without dexamethasone in patients with primary systemic amyloidosis,” Blood, vol. 109, no. 2, pp. 465–470, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. Gertz, R. Comenzo, R. H. Falk et al., “Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis,” American Journal of Hematology, vol. 79, no. 4, pp. 319–328, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. P. H. Wiernik, I. S. Lossos, J. M. Tuscano et al., “Lenalidomide monotherapy in relapsed or refractory aggressive non-Hodgkin's lymphoma,” Journal of Clinical Oncology, vol. 26, no. 30, pp. 4952–4957, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Tefferi, J. Cortes, S. Verstovsek et al., “Lenalidomide therapy in myelofibrosis with myeloid metaplasia,” Blood, vol. 108, no. 4, pp. 1158–1164, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. S. P. Treon, C. J. Patterson, Z. R. Hunter, and A. R. Branagan, “Phase II study of CC-5013 (revlimid) and rituximab in Waldenstrom's macroglobulinemia: preliminary safety and efficacy results,” ASH Annual Meeting Abstracts, vol. 106, no. 11, abstract 2443, 2005. View at Google Scholar
  22. A. A. Chanan-Khan and B. D. Cheson, “Lenalidomide for the treatment of B-cell malignancies,” Journal of Clinical Oncology, vol. 26, no. 9, pp. 1544–1552, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. T. G. Zangari, J. Zeldis, P. Eddlemon, F. Saghafifar, and B. Barlogie, “Results of phase I study of CC-5013 for the treatment of multiple myeloma (MM) patients who relapse after high dose chemotherapy (HDCT),” Blood, vol. 98, abstract 775a, 2001. View at Google Scholar
  24. P. G. Richardson, R. L. Schlossman, E. Weller et al., “Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma,” Blood, vol. 100, no. 9, pp. 3063–3067, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. P. G. Richardson, E. Blood, C. S. Mitsiades et al., “A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma,” Blood, vol. 108, no. 10, pp. 3458–3464, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Dimopoulos, A. Spencer, M. Attal et al., “Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma,” The New England Journal of Medicine, vol. 357, no. 21, pp. 2123–2132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. A. Dimopoulos, C. Chen, A. Spencer et al., “Long-term follow-up on overall survival from the MM-009 and MM-010 phase III trials of lenalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma,” Leukemia, vol. 23, no. 11, pp. 2147–2152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. V. Rajkumar, S. Jacobus, N. S. Callander et al., “Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial,” The Lancet Oncology, vol. 11, no. 1, pp. 29–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Palumbo, F. Cavallo, I. Hardan et al., “A phase III study to compare melphalan, prednisone, lenalidomide (MPR) versus melphalan 200 mg/m2 and autologous transplantation (MEL200) in newly diagnosed multiple myeloma patients,” Blood, vol. 116, abstract 3573, 2010. View at Google Scholar
  30. J. A. Zonder, J. Crowley, M. A. Hussein et al., “Lenalidomide and high-dose dexamethasone compared with dexamethasone as initial therapy for multiple myeloma: a randomized Southwest Oncology Group trial (S0232),” Blood, vol. 116, no. 26, pp. 5838–5841, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Gay, S. V. Rajkumar, M. Coleman et al., “Clarithromycin (Biaxin)-lenalidomide-low-dose dexamethasone (BiRd) versus lenalidomide-low-dose dexamethasone (Rd) for newly diagnosed myeloma,” American Journal of Hematology, vol. 85, no. 9, pp. 664–669, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. P. G. Richardson, E. Weller, S. Lonial et al., “Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma,” Blood, vol. 116, no. 5, pp. 679–686, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Knop, C. Langer, M. Engelhardt et al., “The efficacy and safety of RAD (lenalidomide, adriamycin and dexamethasone) in newly diagnosed multiple myeloma—first results of a phase II trial by the German DSMM Group,” Blood, vol. 116, abstract 1945, 2010. View at Google Scholar
  34. S. K. Kumar, I. Flinn, S. J. Noga et al., “Novel three-and four drug combination regimens of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide, for previously untreated multiple myeloma: results from the multicenter, randomized, phase 2 EVOLUTION Study,” Blood, vol. 116, abstract 621, 2010. View at Google Scholar
  35. A. J. Jakubowiak, D. E. Reece, C. C. Hofmeister et al., “Lenalidomide, bortezomib, pegylated liposomal doxorubicin, and dexamethasone in newly diagnosed multiple myeloma: updated results of phase I/II MMRC trial,” Blood, vol. 114, abstract 132, 2009. View at Google Scholar
  36. W. M. Kuehl and P. L. Bergsagel, “Multiple myeloma: evolving genetic events and host interactions,” Nature Reviews Cancer, vol. 2, no. 3, pp. 175–187, 2002. View at Google Scholar · View at Scopus
  37. T. Hideshima, P. L. I. Bergsagel, W. M. Kuehl, and K. C. Anderson, “Advances in biology of multiple myeloma: clinical applications,” Blood, vol. 104, no. 3, pp. 607–618, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. P. L. Bergsagel and W. M. Kuehl, “Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma,” Immunological Reviews, vol. 194, pp. 96–104, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Urashima, G. Teoh, A. Ogata et al., “Characterization of p16(INK4A) expression in multiple myeloma and plasma cell leukemia,” Clinical Cancer Research, vol. 3, no. 11, pp. 2173–2179, 1997. View at Google Scholar · View at Scopus
  40. G. Guillerm, E. Gyan, D. Wolowiec et al., “p16INK4a and p15INK4b gene methylations in plasma cells from monoclonal gammopathy of undetermined significance,” Blood, vol. 98, no. 1, pp. 244–246, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. M. S. Kulkarni, J. L. Daggett, T. P. Bender, W. M. Kuehl, P. L. Bergsagel, and M. E. Williams, “Frequent inactivation of the cyclin-dependent kinase inhibitor p18 by homozygous deletion in multiple myeloma cell lines: ectopic p18 expression inhibits growth and induces apoptosis,” Leukemia, vol. 16, no. 1, pp. 127–134, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Teoh and K. C. Anderson, “Interaction of tumor and host cells with adhesion and extracellular matrix molecules in the development of multiple myeloma,” Hematology/Oncology Clinics of North America, vol. 11, no. 1, pp. 27–42, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Hideshima, D. Chauhan, T. Hayashi et al., “The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma,” Molecular Cancer Therapeutics, vol. 1, no. 7, pp. 539–544, 2002. View at Google Scholar · View at Scopus
  44. J. S. Damiano, A. E. Cress, L. A. Hazlehurst, A. A. Shtil, and W. S. Dalton, “Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines,” Blood, vol. 93, no. 5, pp. 1658–1667, 1999. View at Google Scholar · View at Scopus
  45. L. A. Hazlehurst, J. S. Damiano, I. Buyuksal, W. J. Pledger, and W. S. Dalton, “Adhesion to fibronectin via β1 integrins regulates p27(kip1) levels and contributes to cell adhesion mediated drug resistance (CAM-DR),” Oncogene, vol. 19, no. 38, pp. 4319–4327, 2000. View at Google Scholar · View at Scopus
  46. D. Chauhan, H. Uchiyama, Y. Akbarali et al., “Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-κB,” Blood, vol. 87, no. 3, pp. 1104–1112, 1996. View at Google Scholar · View at Scopus
  47. B. Dankbar, T. Padró, R. Leo et al., “Vascular endothelial growth factor and interleukin-6 in paracrine tumor- stromal cell interactions in multiple myeloma,” Blood, vol. 95, no. 8, pp. 2630–2636, 2000. View at Google Scholar · View at Scopus
  48. D. Gupta, S. P. Treon, Y. Shima et al., “Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications,” Leukemia, vol. 15, no. 12, pp. 1950–1961, 2001. View at Google Scholar · View at Scopus
  49. B. Klein, X. G. Zhang, M. Jourdan et al., “Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6,” Blood, vol. 73, no. 2, pp. 517–526, 1989. View at Google Scholar · View at Scopus
  50. T. Hideshima, D. Chauhan, R. Schlossman, P. Richardson, and K. C. Anderson, “The role of tumor necrosis factor α in the pathophysiology of human multiple myeloma: therapeutic applications,” Oncogene, vol. 20, no. 33, pp. 4519–4527, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Catlett-Falcone, T. H. Landowski, M. M. Oshiro et al., “Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells,” Immunity, vol. 10, no. 1, pp. 105–115, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Puthier, R. Bataille, and M. Amiot, “IL-6 up-regulates mcl-1 in human myeloma cells through JAK / STAT rather than ras / MAP kinase pathway,” European Journal of Immunology, vol. 29, no. 12, pp. 3945–3950, 1999. View at Google Scholar
  53. M. Jourdan, J. L. Veyrune, J. De Vos, N. Redal, G. Couderc, and B. Klein, “A major role for Mcl-1 antiapoptotic protein in the IL-6-induced survival of human myeloma cells,” Oncogene, vol. 22, no. 19, pp. 2950–2959, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. B. Zhang, I. Gojo, and R. G. Fenton, “Myeloid cell factor-1 is a critical survival factor for multiple myeloma,” Blood, vol. 99, no. 6, pp. 1885–1893, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Verhelle, L. G. Corral, K. Wong et al., “Lenalidomide and CC-4047 inhibit the proliferation of malignant B cells while expanding normal CD34+ progenitor cells,” Cancer Research, vol. 67, no. 2, pp. 746–755, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Escoubet-Lozach, I. L. Lin, K. Jensen-Pergakes et al., “Pomalidomide and lenalidomide induce p21WAF-1 expression in both lymphoma and multiple myeloma through a LSD1-mediated epigenetic mechanism,” Cancer Research, vol. 69, no. 18, pp. 7347–7356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. A. K. Gandhi, J. Kang, L. Capone et al., “Dexamethasone synergizes with lenalidomide to inhibit multiple myeloma tumor growth, but reduces lenalidomide-induced immunomodulation of T and NK cell function,” Current Cancer Drug Targets, vol. 10, no. 2, pp. 155–167, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. L. G. Corral, P. A. Haslett, G. W. Muller et al., “Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-α,” Journal of Immunology, vol. 163, no. 1, pp. 380–386, 1999. View at Google Scholar · View at Scopus
  59. V. Kotla, S. Goel, S. Nischal et al., “Mechanism of action of lenalidomide in hematological malignancies,” Journal of Hematology & Oncology, vol. 2, article 36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. J. L. Xu, R. Lai, T. Kinoshita, N. Nakashima, and T. Nagasaka, “Proliferation, apoptosis, and intratumoral vascularity in multiple myeloma: correlation with the clinical stage and cytological grade,” Journal of Clinical Pathology, vol. 55, no. 7, pp. 530–534, 2002. View at Google Scholar · View at Scopus
  61. K. Dredge, R. Horsfall, S. P. Robinson et al., “Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro,” Microvascular Research, vol. 69, no. 1-2, pp. 56–63, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Chauhan, T. Hideshima, and K. C. Anderson, “Apoptotic signaling in multiple myeloma: therapeutic implications,” International Journal of Hematology, vol. 78, no. 2, pp. 114–120, 2003. View at Google Scholar · View at Scopus
  63. Y. Dai, P. Dent, and S. Grant, “Tumor necrosis factorrelated apoptosis-inducing ligand (TRAIL) promotes mitochondrial dysfunction and apoptosis induced by 7-hydroxystaurosporine and mitogenactivated protein kinase kinase inhibitors in human leukemia cells that ectopically express Bcl-2 and Bcl-xL,” Molecular Pharmacology, vol. 64, no. 6, pp. 1402–1409, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. D. Chauhan, T. Hideshima, S. Rosen, J. C. Reed, S. Kharbanda, and K. C. Anderson, “Apaf-1/cytochrome c independent and Smac dependent induction of apoptosis in multiple myeloma cells,” The Journal of Biological Chemistry, vol. 276, no. 27, pp. 24453–24456, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. Z. L. Chu, T. A. McKinsey, L. Liu, J. J. Gentry, M. H. Malim, and D. W. Ballard, “Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-κB control,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 19, pp. 10057–10062, 1997. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Kreuz, D. Siegmund, P. Scheurich, and H. Wajant, “NF-κB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling,” Molecular and Cellular Biology, vol. 21, no. 12, pp. 3964–3973, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. W. Zou, “Immunosuppressive networks in the tumour environment and their therapeutic relevance,” Nature Reviews Cancer, vol. 5, no. 4, pp. 263–274, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Urashima, A. Ogata, D. Chauhan et al., “Transforming growth factor-β1: differential effects on multiple myeloma versus normal B cells,” Blood, vol. 87, no. 5, pp. 1928–1938, 1996. View at Google Scholar · View at Scopus
  69. H. Ogawara, H. Handa, T. Yamazaki et al., “High Th1/Th2 ratio in patients with multiple myeloma,” Leukemia Research, vol. 29, no. 2, pp. 135–140, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. B. Maecker, K. S. Anderson, M. S. von Bergwelt-Baildon et al., “Viral antigen-specific CD8+ T-cell responses are impaired in multiple myeloma,” British Journal of Haematology, vol. 121, no. 6, pp. 842–848, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. M. V. Dhodapkar, M. D. Geller, D. H. Chang et al., “A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma,” Journal of Experimental Medicine, vol. 197, no. 12, pp. 1667–1676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. M. J. Smyth, D. I. Godfrey, and J. A. Trapani, “A fresh look at tumor immunosurveillance and immunotherapy,” Nature Immunology, vol. 2, no. 4, pp. 293–299, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Jarahian, C. Watzl, Y. Issa, P. Altevogt, and F. Momburg, “Blockade of natural killer cell-mediated lysis by NCAM140 expressed on tumor cells,” International Journal of Cancer, vol. 120, no. 12, pp. 2625–2634, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. P. A. Haslett, W. A. Hanekom, G. Muller, and G. Kaplan, “Thalidomide and a thalidomide analogue drug costimulate virus-specific CD8+ T cells in vitro,” Journal of Infectious Diseases, vol. 187, no. 6, pp. 946–955, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. R. LeBlanc, T. Hideshima, L. P. Catley et al., “Immunomodulatory drug costimulates T cells via the B7-CD28 pathway,” Blood, vol. 103, no. 5, pp. 1787–1790, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. R. D. Brown, B. Pope, A. Murray et al., “Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-β1 and interleukin-10,” Blood, vol. 98, no. 10, pp. 2992–2998, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Ratta, F. Fagnoni, A. Curti et al., “Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6,” Blood, vol. 100, no. 1, pp. 230–237, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. D. I. Gabrilovich, H. L. Chen, K. R. Girgis et al., “Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells,” Nature Medicine, vol. 2, no. 10, pp. 1096–1103, 1996. View at Publisher · View at Google Scholar · View at Scopus
  79. P. H. Schafer, A. K. Gandhi, M. A. Loveland et al., “Enhancement of cytokine production and AP-1 transcriptional activity in T cells by thalidomide-related immunomodulatory drugs,” Journal of Pharmacology and Experimental Therapeutics, vol. 305, no. 3, pp. 1222–1232, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. T. Hayashi, T. Hideshima, M. Akiyama et al., “Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application,” British Journal of Haematology, vol. 128, no. 2, pp. 192–203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Bendelac, M. N. Rivera, S. H. Park, and J. H. Roark, “Mouse CD1-specific NK1 T cells: development, specificity, and function,” Annual Review of Immunology, vol. 15, pp. 535–562, 1997. View at Publisher · View at Google Scholar · View at Scopus
  82. C. A. Biron, K. B. Nguyen, G. C. Pien, L. P. Cousens, and T. P. Salazar-Mather, “Natural killer cells in antiviral defense: function and regulation by innate cytokines,” Annual Review of Immunology, vol. 17, pp. 189–220, 1999. View at Publisher · View at Google Scholar · View at Scopus
  83. K. Takeda, S. Seid, K. Ogasawara et al., “Liver NK1.1+ CD4+ αβ T cells activated by IL-12 as a major effector in inhibition of experimental tumor metastasis,” Journal of Immunology, vol. 156, no. 9, pp. 3366–3373, 1996. View at Google Scholar · View at Scopus
  84. J. Cui, T. Shin, T. Kawano et al., “Requirement for V(α)14 NKT cells in IL-12-mediated rejection of tumors,” Science, vol. 278, no. 5343, pp. 1623–1626, 1997. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Trinchieri and P. Scott, “Interleukin-12: a proinflammatory cytokine with immunoregulatory functions,” Research in Immunology, vol. 146, no. 7-8, pp. 423–431, 1995. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Fujii, K. Shimizu, R. M. Steinman, and M. V. Dhodapkar, “Detection and activation of human Vα24+ natural killer T cells using α-galactosyl ceramide-pulsed dendritic cells,” Journal of Immunological Methods, vol. 272, no. 1-2, pp. 147–159, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Carnaud, D. Lee, O. Donnars et al., “Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells,” Journal of Immunology, vol. 163, no. 9, pp. 4647–4650, 1999. View at Google Scholar · View at Scopus
  88. T. Hayashi, T. Hideshima, M. Akiyama et al., “Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application,” British Journal of Haematology, vol. 128, no. 2, pp. 192–203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. N. Takahashi, K. Maeda, A. Ishihara, S. Uehara, and Y. Kobayashi, “Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals,” Frontiers in Bioscience, vol. 16, no. 1, pp. 21–30, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. E. Terpos, M. A. Dimopoulos, and O. Sezer, “The effect of novel anti-myeloma agents on bone metabolism of patients with multiple myeloma,” Leukemia, vol. 21, no. 9, pp. 1875–1884, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. I. Breitkreutz, M. S. Raab, S. Vallet et al., “Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma,” Leukemia, vol. 22, no. 10, pp. 1925–1932, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. I. Takumi and H. Hiroshi, “Deciphering the mystery of thalidomide teratogenicity,” Congenital Anomalies, vol. 52, no. 1, pp. 1–7, 2012. View at Google Scholar
  93. Y. X. Zhu, E. Braggio, C. X. Shi et al., “Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide,” Blood, vol. 118, no. 18, pp. 4771–4779, 2011. View at Google Scholar
  94. X. B. Chang and A. K. Stewart, “What is the functional role of the thalidomide binding protein cereblon?” International Journal of Biochemistry and Molecular Biology, vol. 2, no. 3, pp. 287–294, 2011. View at Google Scholar
  95. Y. Cang, J. Zhang, S. A. Nicholas et al., “Deletion of DDB1 in mouse brain and lens leads to p53-dependent elimination of proliferating cells,” Cell, vol. 127, no. 5, pp. 929–940, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Cang, J. Zhang, S. A. Nicholas, A. L. Kim, P. Zhou, and S. P. Goff, “DDB1 is essential for genomic stability in developing epidermis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 8, pp. 2733–2737, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. A. Lopez-Girona, D. Mendy, K. Miller et al., “Direct binding with cereblon mediates the antiproliferative and immunomodulatory action of lenalidomide and pomalidomide,” in Proceedings of the ASH Annual Meeting and Exposition, 2011.
  98. D. Heintel, A. Bolomsky, M. Schreder et al., “High expression of the thalidomide-binding protein cereblon (CRBN) is associated with improved clinical response in patients with multiple myeloma treated with lenalidomide and dexamethasone,” in Proceedings of the ASH Annual Meeting and Exposition, 2011.