Table of Contents Author Guidelines Submit a Manuscript
Advances in Hematology
Volume 2012, Article ID 843085, 6 pages
http://dx.doi.org/10.1155/2012/843085
Review Article

PI3K/AKT/PTEN Signaling as a Molecular Target in Leukemia Angiogenesis

Department of Environmental Health Science, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan

Received 5 July 2011; Accepted 11 December 2011

Academic Editor: Michael L. Grossbard

Copyright © 2012 Naoko Okumura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Piyaviriyakul, K. Shimizu, T. Asakawa, T. Kan, P. Siripong, and N. Oku, “Anti-angiogenic activity and intracellular distribution of epigallocatechin-3-gallate analogs,” Biological and Pharmaceutical Bulletin, vol. 34, no. 3, pp. 396–400, 2011. View at Publisher · View at Google Scholar
  2. I. Arnaoutova and H. K. Kleinman, “In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract,” Nature Protocols, vol. 5, no. 4, pp. 628–635, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. Y. Zhang, H. Tang, J. Cai et al., “Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion,” Cancer Letters, vol. 303, no. 1, pp. 47–55, 2011. View at Publisher · View at Google Scholar · View at PubMed
  4. P. Rouhi, S. L. C. Lee, Z. Cao, E. M. Hedlund, L. D. Jensen, and Y. Cao, “Pathological angiogenesis facilitates tumor cell dissemination and metastasis,” Cell Cycle, vol. 9, no. 5, pp. 913–917, 2010. View at Google Scholar · View at Scopus
  5. A. Bruni-Cardoso, L. C. Johnson, R. L. Vessella, T. E. Peterson, and C. C. Lynch, “Osteoclast-derived matrix metalloproteinase-9 directly affects angiogenesis in the prostate tumor-bone microenvironment,” Molecular Cancer Research, vol. 8, no. 4, pp. 459–470, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. S. A. Schmid, A. Gaumann, M. Wondrak et al., “Lactate adversely affects the in vitro formation of endothelial cell tubular structures through the action of TGF-β1,” Experimental Cell Research, vol. 313, no. 12, pp. 2531–2549, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. M. G. Alexandrakis, F. H. Passam, C. A. Pappa et al., “Serum evaluation of angiogenic cytokines basic fibroblast growth factor, hepatocyte growth factor and TNF-alpha in patients with myelodysplastic syndromes: correlation with bone marrow microvascular density,” International Journal of Immunopathology and Pharmacology, vol. 18, no. 2, pp. 287–295, 2005. View at Google Scholar · View at Scopus
  8. B. H. Jiang and L. Z. Liu, “PI3K/PTEN signaling in angiogenesis and tumorigenesis,” Advances in Cancer Research, vol. 102, pp. 19–65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Shafee, S. Kaluz, N. Ru, and E. J. Stanbridge, “PI3K/Akt activity has variable cell-specific effects on expression of HIF target genes, CA9 and VEGF, in human cancer cell lines,” Cancer Letters, vol. 282, no. 1, pp. 109–115, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. C. Xia, Q. Meng, Z. Cao, X. Shi, and B. H. Jiang, “Regulation of aneiogenesis and tumor growth by p110 alpha and AKT1 via VEGF expression,” Journal of Cellular Physiology, vol. 209, no. 1, pp. 56–66, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. K. D. Courtney, R. B. Corcoran, and J. A. Engelman, “The PI3K pathway as drug target in human cancer,” Journal of Clinical Oncology, vol. 28, no. 6, pp. 1075–1083, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. H. D. Skinner, J. Z. Zheng, J. Fang, F. Agani, and B. H. Jiang, “Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1α, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling,” Journal of Biological Chemistry, vol. 279, no. 44, pp. 45643–45651, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. Graupera, J. Guillermet-Guibert, L. C. Foukas et al., “Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration,” Nature, vol. 453, no. 7195, pp. 662–666, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. J. D. Su, L. D. Mayo, D. B. Donner, and D. L. Durden, “PTEN and phosphatidylinositol 3′-kinase inhibitors up-regulate p53 and block tumor-induced angiogenesis: evidence for an effect on the tumor and endothelial compartment,” Cancer Research, vol. 63, no. 13, pp. 3585–3592, 2003. View at Google Scholar · View at Scopus
  15. S. P. Staal, “Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 14, pp. 5034–5037, 1987. View at Google Scholar · View at Scopus
  16. C. Kroner, K. Eybrechts, and J. W. N. Akkerman, “Dual regulation of platelet protein kinase B,” Journal of Biological Chemistry, vol. 275, no. 36, pp. 27790–27798, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. H. Tanaka, N. Fujita, and T. Tsuruo, “3-Phosphoinositide-dependent protein kinase-1-mediated IκB kinase β(IKKB) phosphorylation activates NF-κB signaling,” Journal of Biological Chemistry, vol. 280, no. 49, pp. 40965–40973, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. B. H. Jiang, J. Z. Zheng, M. Aoki, and P. K. Vogt, “Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 4, pp. 1749–1753, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. A. R. Tee, B. D. Manning, P. P. Roux, L. C. Cantley, and J. Blenis, “Tuberous Sclerosis Complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb,” Current Biology, vol. 13, no. 15, pp. 1259–1268, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. P. R. Hagner, A. Schneider, and R. B. Gartenhaus, “Targeting the translational machinery as a novel treatment strategy for hematologic malignancies,” Blood, vol. 115, no. 11, pp. 2127–2135, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. S. M. Planchon, K. A. Waite, and C. Eng, “The nuclear affairs of PTEN,” Journal of Cell Science, vol. 121, no. 3, pp. 249–253, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. M. Bonnet, M. Loosveld, B. Montpellier et al., “Posttranscriptional deregulation of MYC via PTEN constitutes a major alternative pathway of MYC activation in T-cell acute lymphoblastic leukemia,” Blood, vol. 117, no. 24, pp. 6650–6659, 2011. View at Publisher · View at Google Scholar · View at PubMed
  23. L. R. Martins, P. Lúcio, M. C. Silva et al., “Targeting CK2 overexpression and hyperactivation as a novel therapeutic tool in chronic lymphocytic leukemia,” Blood, vol. 116, no. 15, pp. 2724–2731, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. A. Gutierrez, T. Sanda, R. Grebliunaite et al., “High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia,” Blood, vol. 114, no. 3, pp. 647–650, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. L. S. Steelman, R. A. Franklin, S. L. Abrams et al., “Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy,” Leukemia, vol. 25, no. 7, pp. 1080–1094, 2011. View at Publisher · View at Google Scholar · View at PubMed
  26. I. Vivanco, N. Palaskas, C. Tran et al., “Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN,” Cancer Cell, vol. 11, no. 6, pp. 555–569, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. A. Suzuki, K. Hamada, T. Sasaki, T. W. Mak, and T. Nakano, “Role of PTEN/PI3K pathway in endothelial cells,” Biochemical Society Transactions, vol. 35, no. 2, pp. 172–176, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. V. Baron, E. D. Adamson, A. Calogero, G. Ragona, and D. Mercola, “The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFβ1, PTEN, p53, and fibronectin,” Cancer Gene Therapy, vol. 13, no. 2, pp. 115–124, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. K. B. Harikumar and B. B. Aggarwal, “Resveratrol: a multitargeted agent for age-associated chronic diseases,” Cell Cycle, vol. 7, no. 8, pp. 1020–1037, 2008. View at Google Scholar · View at Scopus
  30. L. W. Xing, L. Zhang, K. Youker et al., “Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase,” Diabetes, vol. 55, no. 8, pp. 2301–2310, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. J. Y. C. Chow, M. Ban, H. L. Wu et al., “TGF-β downregulates PTEN via activation of NF-κB in pancreatic cancer cells,” American Journal of Physiology, vol. 298, no. 2, pp. G275–G282, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. L. Moore-Smith and B. Pasche, “TGFBR1 signaling and breast cancer,” Journal of Mammary Gland Biology and Neoplasia, vol. 16, no. 2, pp. 89–95, 2011. View at Publisher · View at Google Scholar · View at PubMed
  33. H. Yoshida, N. Okumura, Y. Kitagishi, Y. Nishimura, and S. Matsuda, “Ethanol extract of Rosemary repressed PTEN expression in K562 culture cells,” International Journal of Applied Biology and Pharmaceutical Technology, vol. 2, pp. 316–322, 2011. View at Google Scholar
  34. M. G. Pezzolesi, P. Platzer, K. A. Waite, and C. Eng, “Differential expression of PTEN-targeting microRNAs miR-19a and miR-21 in cowden syndrome,” American Journal of Human Genetics, vol. 82, no. 5, pp. 1141–1149, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. C. Gómez-Raposo, M. Mendiola, J. Barriuso, E. Casado, D. Hardisson, and A. Redondo, “Angiogenesis and ovarian cancer,” Clinical & Translational Oncology, vol. 11, no. 9, pp. 564–571, 2009. View at Google Scholar · View at Scopus
  36. L. Ellis, H. Hammers, and R. Pili, “Targeting tumor angiogenesis with histone deacetylase inhibitors,” Cancer Letters, vol. 280, no. 2, pp. 145–153, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. Q. Li, M. Michaud, S. Canosa, A. Kuo, and J. A. Madri, “GSK-3β: a signaling pathway node modulating neural stem cell and endothelial cell interactions,” Angiogenesis, vol. 14, no. 2, pp. 173–185, 2011. View at Publisher · View at Google Scholar · View at PubMed
  38. M. A. Pallero, C. A. Elzie, J. Chen, D. F. Mosher, and J. E. Murphy-Ullrich, “Thrombospondin 1 binding to calreticulin-LRP1 signals resistance to anoikis,” FASEB Journal, vol. 22, no. 11, pp. 3968–3979, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. J. Chen, P. R. Somanath, O. Razorenova et al., “Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo,” Nature Medicine, vol. 11, no. 11, pp. 1188–1196, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. M. Kafousi, T. Vrekoussis, E. Tsentelierou et al., “Immunohistochemical study of the angiogenetic network of VEGF, HIF1α, VEGFR-2 and endothelial nitric oxide synthase (eNOS) in human breast cancer,” Pathology and Oncology Research, vol. 18, no. 1, pp. 33–41, 2012. View at Publisher · View at Google Scholar · View at PubMed
  41. Y. Lu, Y. Xiong, Y. Huo et al., “Grb-2-associated binder 1 (Gab1) regulates postnatal ischemic and VEGF-induced angiogenesis through the protein kinase A-endothelial NOS pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 7, pp. 2957–2962, 2011. View at Publisher · View at Google Scholar · View at PubMed
  42. Q. J. Zhang, S. L. Mcmillin, J. M. Tanner, M. Palionyte, E. D. Abel, and J. D. Symons, “Endothelial nitric oxide synthase phosphorylation in treadmill-running mice: role of vascular signalling kinases,” Journal of Physiology, vol. 587, no. 15, pp. 3911–3920, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. B. H. Jiang and L. Z. Liu, “AKT signaling in regulating angiogenesis,” Current Cancer Drug Targets, vol. 8, no. 1, pp. 19–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. C. X. Bian, Z. Shi, Q. Meng, Y. Jiang, L. Z. Liu, and B. H. Jiang, “P70S6K 1 regulation of angiogenesis through VEGF and HIF-1α expression,” Biochemical and Biophysical Research Communications, vol. 398, no. 3, pp. 395–399, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. D. Kong and T. Yamori, “Phosphatidylinositol 3-kinase inhibitors: promising drug candidates for cancer therapy,” Cancer Science, vol. 99, no. 9, pp. 1734–1740, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. K. Yu, J. Lucas, T. Zhu et al., “PWT-458, a novel pegylated-17-hydroxywortmannin, inhibits phosphatidylinositol 3-kinase signaling and suppresses growth of solid tumors,” Cancer Biology and Therapy, vol. 4, no. 5, pp. 538–545, 2005. View at Google Scholar · View at Scopus
  47. D. W. Kim, J. Huamani, A. Fu, and D. E. Hallahan, “Molecular strategies targeting the host component of cancer to enhance tumor response to radiation therapy,” International Journal of Radiation Oncology Biology Physics, vol. 64, no. 1, pp. 38–46, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. H. R. Fei, G. Chen, J. M. Wang, and F. Z. Wang, “Perifosine induces cell cycle arrest and apoptosis in human hepatocellular carcinoma cell lines by blockade of Akt phosphorylation,” Cytotechnology, vol. 62, no. 5, pp. 449–460, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. T. Maffucci, E. Piccolo, A. Cumashi et al., “Inhibition of the phosphatidylinositol 3-kinase/Akt pathway by inositol pentakisphosphate results in antiangiogenic and antitumor effects,” Cancer Research, vol. 65, no. 18, pp. 8339–8349, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. S. Romano, A. L. Di Pace, A. Sorrentino, R. Bisogni, L. Sivero, and M. F. Romano, “FK506 binding proteins as targets in anticancer therapy,” Anti-Cancer Agents in Medicinal Chemistry, vol. 10, no. 9, pp. 651–656, 2010. View at Google Scholar
  51. C. Zhiyong, L. Wentong, Y. Xiaoyang, and P. Ling, “PTEN's regulation of VEGF and VEGFR1 expression and its clinical significance in myeloid leukemia,” Medical Oncology. In press. View at Publisher · View at Google Scholar · View at PubMed