Table of Contents Author Guidelines Submit a Manuscript
Advances in High Energy Physics
Volume 2013, Article ID 317605, 5 pages
http://dx.doi.org/10.1155/2013/317605
Research Article

The Nonrelativistic Scattering States of the Deng-Fan Potential

1Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
2Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China
3Department of Basic Sciences, Gamrsar Branch, Islamic Azad University, Gamrsar, Iran

Received 3 January 2013; Revised 24 February 2013; Accepted 28 February 2013

Academic Editor: Kadayam S. Viswanathan

Copyright © 2013 Bentol Hoda Yazarloo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. H. Deng and Y. P. Fan, “A potential function of diatomic molecules,” Shandong University Journal, vol. 7, article 162, 1957. View at Google Scholar
  2. S. H. Dong, “Relativistic treatment of spinless particles subject to a rotating Deng-Fan oscillator,” Communications in Theoretical Physics, vol. 55, no. 6, article 969, 2011. View at Google Scholar
  3. S. H. Dong and X. Y. Gu, “Arbitrary l state solutions of the Schrِdinger equation with the Deng-Fan molecular potential,” Journal of Physics Conference Series, vol. 96, no. 1, Article ID 012109, 2008. View at Publisher · View at Google Scholar
  4. H. Hassanabadi, B. H. Yazarloo, S. Zarrinkamar, and H. Rahimov, “Deng-Fan potential for relativistic spinless particles: an Ansatz solution,” Communications in Theoretical Physics, vol. 57, no. 3, pp. 339–342, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. O. J. Oluwadare, K. J. Oyewumi, and O. A. Babalola, “Exact S-Wave Solution of the Klein-Gordon Equation with the Deng-Fan Molecular Potential using the Nikiforov-Uvarov (NU) Method,” The African Review of Physics, vol. 7, article 0016, 2012. View at Google Scholar
  6. L. L. Lu, B. H. Yazarloo, S. Zarrinkamar, G. Liu, and H. Hassanabadi, “Calculation of the oscillator strength for the Klein-Gordon equation with Tietz potential,” Few-Body Systems, vol. 53, pp. 573–581, 2012. View at Google Scholar
  7. G. F. Wei and S. H. Dong, “A novel algebraic approach to spin symmetry for Dirac equation with scalar and vector second Pöschl-Teller potentials,” European Physical Journal A, vol. 43, pp. 185–190, 2010. View at Google Scholar
  8. S. Hassanabadi, A. A. Rajabi, B. H. Yazarloo, S. Zarrinkamar, and H. Hassanabadi, “Quasi-analytical solutions of DKP equation under the Deng-Fan interaction,” Advances in High Energy Physics, vol. 2012, Article ID 804652, 13 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  9. H. Hassanabadi S. Zarrinkamar and B. H. Yazarloo, “Spectrum of a Hyperbolic Potential via SUSYQM within the Semi-Relativistic Formalism,” Chinese Journal of Physics, vol. 50, no. 5, pp. 788–794, 2012. View at Google Scholar
  10. B. H. Yazarloo, H. Hassanabadi, and S. Zarrinkamar, “Oscillator strengths based on the Mِbius square potential under Schrِdinger equation,” The European Physical Journal Plus, vol. 127, article 51, 2012. View at Google Scholar
  11. X.-Y. Gu and S.-H. Dong, “Energy spectrum of the Manning-Rosen potential including centrifugal term solved by exact and proper quantization rules,” Journal of Mathematical Chemistry, vol. 49, no. 9, pp. 2053–2062, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  12. S.-H. Dong and G.-H. Sun, “The series solutions of the non-relativistic equation with the Morse potential,” Physics Letters A, vol. 314, no. 4, pp. 261–266, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. S.-H. Dong, “A new approach to the relativistic Schrödinger equation with central potential: ansatz method,” International Journal of Theoretical Physics, vol. 40, no. 2, pp. 559–567, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. C.-Y. Chen, D.-S. Sun, and F.-L. Lu, “Scattering states of the Klein-Gordon equation with Coulomb-like scalar plus vector potentials in arbitrary dimension,” Physics Letters A, vol. 330, no. 6, pp. 424–428, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. G. F. Wei, W. C. Qiang, and W. L. Chen, “Approximate analytical solution of continuous states for the l-wave Schrِdinger equation with a diatomic molecule potential,” Central European Journal of Physics, vol. 8, no. 4, pp. 574–579, 2010. View at Google Scholar
  16. A. Arda, O. Aydogdu, and R. Sever, “Scattering and bound state solutions of the asymmetric Hulthén potential,” Physica Scripta, vol. 84, no. 2, pp. 25004–25009, 2011. View at Google Scholar
  17. C. Rojas and V. M. Villalba, “Scattering of a Klein-Gordon particle by a Woods-Saxon potential,” Physical Review A, vol. 71, no. 5, Article ID 052101.
  18. A. Arda and R. Sever, “Effective-mass Klein-Gordon-Yukawa problem for bound and scattering states,” Journal of Mathematical Physics, vol. 52, no. 9, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  19. G.-F. Wei, X.-Y. Liu, and W.-L. Chen, “The relativistic scattering states of the Hulthén potential with an improved new approximate scheme to the centrifugal term,” International Journal of Theoretical Physics, vol. 48, no. 6, pp. 1649–1658, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. G.-F. Wei, C.-Y. Long, and S.-H. Dong, “The scattering of the Manning-Rosen potential with centrifugal term,” Physics Letters A, vol. 372, no. 15, pp. 2592–2596, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet