Table of Contents Author Guidelines Submit a Manuscript
Advances in High Energy Physics
Volume 2013, Article ID 351926, 34 pages
http://dx.doi.org/10.1155/2013/351926
Review Article

Solar Neutrinos

1Dipartimento di Fisica, Universitá degli Studi di Milano and INFN Milano, Via Celoria 16, 20133 Milano, Italy
2Instituto de Fisica Corpuscular, CSIC-UVEG, 46071 Valencia, Spain
3Instituto de Ciencias del Espacio (CSIC-IEEC), Facultad de Ciencias, Campus UAB, 08193 Bellaterra, Spain

Received 13 July 2012; Accepted 9 October 2012

Academic Editor: Arthur B. McDonald

Copyright © 2013 V. Antonelli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Bilenky, C. Giunti, and W. Grimus, “Phenomenology of neutrino oscillations,” Progress in Particle and Nuclear Physics, vol. 43, no. 1, pp. 1–86, 1999. View at Google Scholar · View at Scopus
  2. G. Altarelli and F. Feruglio, “Models of neutrino masses and mixings,” New Journal of Physics, vol. 6, pp. 1–39, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Strumia and F. Vissani, “Implications of neutrino data circa 2005,” Nuclear Physics B, vol. 726, no. 1-2, pp. 294–316, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Strumia and F. Vissani, “Neutrino masses and mixings and...,” http://arxiv.org/abs/hep-ph/0606054.
  5. R. N. Mohapatra, S. Antusch, K. S. Babu et al., “Theory of neutrinos,” submitted, http://arxiv.org/abs/hep-ph/0412099.
  6. T. Hambye, Y. Lin, A. Notari, M. Papucci, and A. Strumia, “Constraints on neutrino masses from leptogenesis models,” Nuclear Physics B, vol. 695, no. 1-2, pp. 169–191, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. R. N. Mohapatra and A. Y. Smirnov, “Neutrino mass and new physics,” Annual Review of Nuclear and Particle Science, vol. 56, pp. 569–628, 2006. View at Publisher · View at Google Scholar
  8. R. Barbieri, P. Creminelli, and A. Strumia, “Neutrino oscillations and large extra dimensions,” Nuclear Physics B, vol. 585, no. 1-2, pp. 28–44, 2000. View at Google Scholar · View at Scopus
  9. N. Arkani-Hamed, S. Dimopoulos, G. R. Dvali, and J. March-Russell, “Neutrino masses from large extra dimensions,” Physical Review D, vol. 65, no. 2, Article ID 024032, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Altarelli and F. Feruglio, “Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions,” Nuclear Physics B, vol. 720, no. 1-2, pp. 64–88, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. G. C. Branco, R. González Felipe, F. R. Joaquim, and M. N. Rebelo, “Leptogenesis, CP violation and neutrino data: What can we learn?” Nuclear Physics B, vol. 640, no. 1-2, pp. 202–232, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. E. K. Akhmedov, M. Frigerio, and A. Y. Smirnov, “Probing the seesaw mechanism with neutrino data and leptogenesis,” Journal of High Energy Physics, vol. 309, p. 21, 2003. View at Publisher · View at Google Scholar
  13. T. Hambye, Y. Lin, A. Notari, M. Papucci, and A. Strumia, “Constraints on neutrino masses from leptogenesis models,” Nuclear Physics B, vol. 695, no. 1-2, pp. 169–191, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. J. N. Bahcall, “Solar neutrinos. I. Theoretical,” Physical Review Letters, vol. 12, pp. 300–302, 1964. View at Publisher · View at Google Scholar
  15. R. J. Davis, “Solar neutrinos. II. Experimental,” Physical Review Letters, vol. 12, pp. 302–305, 1964. View at Publisher · View at Google Scholar
  16. R. J. Davis, D. S. Harmer, and K. C. Hoffman, “Search for neutrinos from the sun,” Physical Review Letters, vol. 20, pp. 1205–1209, 1968. View at Publisher · View at Google Scholar
  17. L. Miramonti and F. Reseghetti, “Solar neutrino physics: historical evolution, present status and perspectives,” Rivista del Nuovo Cimento, vol. 25, no. 7, pp. 1–128, 2002. View at Google Scholar
  18. B. Pontecorvo, “Mesonium and anti-mesonium,” Journal of Experimental and Theoretical Physics, vol. 33, p. 549, 1957, Soviet Physics, vol. 6, pp. 429, 1958. View at Google Scholar
  19. B. Pontecorvo, “Inverse beta processes and nonconservation of lepton charge,” Journal of Experimental and Theoretical Physics, vol. 34, p. 247, 1958, Soviet Physics, vol. 7, pp. 172, 1958. View at Google Scholar
  20. K. S. Hirata, T. Kajita, T. Kifune et al., “Observation of 8B solar neutrinos in the Kamiokande-II detector,” Physical Review Letters, vol. 63, pp. 16–19, 1989. View at Publisher · View at Google Scholar
  21. Y. Fukuda, T. Hayakawa, E. Ichihara et al., “Measurement of the solar neutrino energy spectrum using neutrino-electron scattering,” Physical Review Letters, vol. 82, pp. 2430–2434, 1999. View at Publisher · View at Google Scholar
  22. W. Hampel, J. Handta, G. Heusser et al., “GALLEX solar neutrino observations: results for GALLEX IV,” Physics Letters B, vol. 447, pp. 127–133, 1999. View at Publisher · View at Google Scholar
  23. M. Altmann, M. Balatab, P. Bellic et al., “Complete results for five years of GNO solar neutrino observations,” Physics Letters B, vol. 616, pp. 174–190, 2005. View at Publisher · View at Google Scholar
  24. J. N. Abdurashitov, T. J. Bowles, M. L. Cherry et al., “Measurement of the solar neutrino capture rate by SAGE and implications for neutrino oscillations in vacuum,” Physical Review Letters, vol. 83, pp. 4686–4689, 1999. View at Publisher · View at Google Scholar
  25. Q. R. Ahmad, R. C. Allen, T. C. Andersen et al., “Measurement of the rate of ve+dp+p+e interactions produced by 8B solar neutrinos at the sudbury neutrino observatory,” Physical Review Letters, vol. 87, Article ID 071301, 2001. View at Google Scholar
  26. S. Fukuda, Y. Fukuda, M. Ishitsuka et al., “Solar 8B and hep neutrino measurements from 1258 days of super-kamiokande data,” Physical Review Letters, vol. 86, pp. 5651–5655, 2001. View at Publisher · View at Google Scholar
  27. J. N. Bahcall, M. C. Gonzalez-Garcia, and C. Peña-Garay, “Global analysis of solar neutrino oscillations including SNO CC measurement,” Journal of High Energy Physics, vol. 8, p. 14, 2001. View at Publisher · View at Google Scholar
  28. G. L. Fogli, E. Lisi, D. Montanino, and A. Palazzo, “Model-dependent and independent implications of the first Sudbury Neutrino Observatory results,” Physical Review D, vol. 64, Article ID 093007, 2001. View at Google Scholar
  29. Q. R. Ahmad, R. C. Allen, T. C. Andersen et al., “Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory,” Physical Review Letters, vol. 89, no. 1, Article ID 011301, 6 pages, 2002. View at Google Scholar
  30. S. N. Ahmed, A. E. Anthony, E. W. Beier et al., “Measurement of the total active 8B solar neutrino flux at the sudbury neutrino observatory with enhanced neutral current sensitivity,” Physical Review Letters, vol. 92, no. 18, Article ID 181301, 6 pages, 2004. View at Google Scholar
  31. B. Aharmim, S. N. Ahmed, J. F. Amsbaugh et al., “Independent measurement of the total active 8B solar neutrino flux using an array of 3He proportional counters at the sudbury neutrino observatory,” Physical Review Letters, vol. 101, Article ID 111301, 5 pages, 2008. View at Publisher · View at Google Scholar
  32. Q. R. Ahmad, R. C. Allen, T. C. Andersen et al., “Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters,” Physical Review Letters, vol. 89, no. 1, Article ID 011302, 5 pages, 2002. View at Google Scholar
  33. R. Davis, “Memories of a Nobel laureate,” CERN Courier, vol. 42, no. 10, p. 15, 2002. View at Google Scholar
  34. K. Eguchi, S. Enomoto, K. Furuno et al., “First results from KamLAND: evidence for reactor antineutrino disappearance,” Physical Review Letters, vol. 90, Article ID 021802, 6 pages, 2003. View at Publisher · View at Google Scholar
  35. J. N. Bahcall, M. Pinsonneault, and S. Basu, “Solar models: current epoch and time dependences, neutrinos, and helioseismological properties,” The Astrophysical Journal, vol. 555, no. 2, p. 990, 2001. View at Publisher · View at Google Scholar
  36. A. Piepke, “KamLAND: a reactor neutrino experiment testing the solar neutrino anomaly,” Nuclear Physics B, vol. 91, pp. 99–104, 2001. View at Publisher · View at Google Scholar
  37. A. de Gouvea and C. Peña-Garay, “Solving the solar neutrino puzzle with KamLAND and solar data,” Physical Review D, vol. 64, Article ID 0113011, 8 pages, 2001. View at Publisher · View at Google Scholar
  38. P. Aliani, V. Antonelli, M. Picariello, and E. Torrente-Lujan, “KamLAND and the determination of neutrino mixing parameters in the post SNO-NC era,” New Journal of Physics, vol. 5, p. 2, 2003. View at Publisher · View at Google Scholar
  39. T. Araki, K. Eguchi, S. Enomoto et al., “Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion,” Physical Review Letters, vol. 94, Article ID 081801, 8 pages, 2005. View at Publisher · View at Google Scholar
  40. S. Abe, T. Ebihara, S. Enomoto et al., “Precision measurement of neutrino oscillation parameters with KamLAND,” Physical Review Letters, vol. 100, no. 22, Article ID 221803, 5 pages, 2008. View at Publisher · View at Google Scholar
  41. A. Gando, Y. Gando, K. Ichimura et al., “Constraints on θ13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND,” Physical Review D, vol. 83, Article ID 052002, 11 pages, 2011. View at Publisher · View at Google Scholar
  42. J. N. Bahcall, W. F. Huebner, S. H. Lubow, P. D. Parker, and R. K. Ulrich, “Standard solar models and the uncertainties in predicted capture rates of solar neutrinos,” Reviews of Modern Physics, vol. 54, pp. 767–799, 1982. View at Publisher · View at Google Scholar
  43. J. N. Bahcall, Neutrino Astrophysics, Cambridge University Press, 1989.
  44. K. Lodders, H. Palme, and H.-P. Gail, “Abundances of the elements in the solar system,” submitted, http://arxiv.org/abs/0901.1149.
  45. B. Beeck, R. Collet, M. Steffen et al., “Simulations of the solar near-surface layers with the CO5BOLD, MURaM, and Stagger codes,” Astronom & Astrophys, vol. 539, article 121, 11 pages, 2012. View at Publisher · View at Google Scholar
  46. M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, “The chemical composition of the sun,” Annual Review of Astronomy and Astrophysics, vol. 47, pp. 481–522, 2009. View at Publisher · View at Google Scholar
  47. M. Asplund, N. Grevesse, and J. Sauval, “The solar chemical composition,” in Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, T. G. Barnes III and F. N. Bash, Eds., vol. 336, p. 25, 2005. View at Google Scholar
  48. C. Allende Prieto, D. L. Lambert, and M. Asplund, “The forbidden abundance of oxygen in the sun,” The Astrophysical Journal Letters, vol. 556, p. L63, 2001. View at Publisher · View at Google Scholar
  49. N. Grevesse and A. Noels, “Solar composition,” in Origin and Evolution of Elements, N. Prantzos, E. Vangioni-Flam, and M. Casse, Eds., p. 15, 1993. View at Google Scholar
  50. N. Grevesse and A. J. Sauval, “Standard solar composition,” Space Science Reviews, vol. 85, no. 1-2, pp. 161–174, 1998. View at Google Scholar · View at Scopus
  51. E. Caffau, H. G. Ludwig, M. Steffen, B. Freytag, and P. Bonifacio, “Solar chemical abundances determined with a CO5BOLD 3D model atmosphere,” Solar Physics, vol. 268, no. 2, pp. 255–269, 2011. View at Publisher · View at Google Scholar
  52. C. A. Iglesias and F. J. Rogers, “Updated opal opacities,” The Astrophysical Journal, vol. 464, p. 943, 1996. View at Publisher · View at Google Scholar
  53. N. R. Badnell, M. A. Bautista, K. Butler et al., “Updated opacities from the opacity project,” Monthly Notices of the Royal Astronomical Society, vol. 360, no. 2, pp. 458–464, 2005. View at Publisher · View at Google Scholar
  54. J. W. Ferguson, D. R. Alexander, F. Allard et al., “Low-temperature opacities,” The Astrophysical Journal, vol. 623, p. 585, 2005. View at Publisher · View at Google Scholar
  55. E. G. Adelberger, A. García, R. G. H. Robertson et al., “Solar fusion cross sections. II. The pp chain and CNO cycles,” Reviews of Modern Physics, vol. 83, pp. 195–245, 2011. View at Publisher · View at Google Scholar
  56. E. G. Adelberger, S. M. Austin, J. N. Bahcall et al., “Solar fusion cross sections,” Reviews of Modern Physics, vol. 70, pp. 1265–1291, 1998. View at Publisher · View at Google Scholar
  57. J. Christensen Dalsgaard, “Helioseismology,” Reviews of Modern Physics, vol. 74, pp. 1073–1129, 2002. View at Publisher · View at Google Scholar
  58. J. Christensen Dalsgaard, W. Dappen, S. V. Ajukov et al., “The current state of solar modeling,” Science, vol. 272, pp. 1286–1292, 1996. View at Publisher · View at Google Scholar
  59. S. Basu and H. M. Antia, “Seismic measurement of the depth of the solar convection zone,” Monthly Notices of the Royal Astronomical Society, vol. 287, no. 1, pp. 189–198, 1997. View at Google Scholar · View at Scopus
  60. S. Basu and H. Antia, “Constraining solar abundances using helioseismology,” The Astrophysical Journal Letters, vol. 606, no. 1, p. 85L, 2004. View at Publisher · View at Google Scholar
  61. S. Basu, “Solar internal sound speed as inferred from combined BiSON and LOWL oscillation frequencies,” Monthly Notices of the Royal Astronomical Society, vol. 292, no. 2, pp. 243–251, 1997. View at Google Scholar
  62. A. G. Kosovichev, J. Schou, P. H. Scherrer et al., “Structure and rotation of the solar interior: initial results from the Mdi medium-L program,” Solar Physics, vol. 170, no. 1, pp. 43–61, 1997. View at Publisher · View at Google Scholar
  63. S. Basu, W. J. Chaplin, Y. Elsworth, R. New, A. M. Serenelli et al., “Fresh insights on the structure of the solar core,” Astrophysical Journal Letters, vol. 699, no. 2, pp. 1403–1417, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. A. M. Serenelli, W. C. Haxton, and C. Peña-Garay, “Solar models with accretion. I. Application to the solar abundance problem,” The Astrophysical Journal, vol. 743, p. 24, 2011. View at Publisher · View at Google Scholar
  65. H. M. Antia and S. Basu, “Determining solar abundances using helio seismology,” Astrophysical Journal Letters, vol. 644, no. 2, pp. 1292–1298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. W. J. Chaplin, A. M. Serenelli, S. Basu, Y. Elsworth, R. New, and G. A. Verner, “Solar heavy-element abundance: constraints from frequency separationjiatios of low-degree p-modes,” Astrophysical Journal Letters, vol. 670, no. 1, pp. 872–884, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Montalban, A. Miglio, A. Noels, and N. Grevesse, “In SOHO 14 Helio- and asteroseismology: towards a golden future,” ESA Special Publication, vol. 559, p. 574, 2004. View at Google Scholar
  68. S. Turck-Chièze, S. Couvidat, L. Piau et al., “Surprising sun: a new step towards a complete picture?” Physical Review Letters, vol. 93, Article ID 211102, 4 pages, 2004. View at Publisher · View at Google Scholar
  69. J. N. Bahcall, S. Basu, M. H. Pinsonneault, and A. M. Serenelli, “Helioseismological implications of recent solar abundance determinations,” Astrophysical Journal, vol. 618, no. 2, pp. 1049–1056, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. F. Delahaye and M. H. Pinsonneault, “The solar heavy-element abundances. I. Constraints from stellar interiors,” Astrophysical Journal, vol. 649, no. 1, pp. 529–540, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. A. M. Serenelli and S. Basu, “Determining the initial helium abundance of the sun,” Astrophysical Journal Letters, vol. 719, no. 1, pp. 865–872, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. A. M. Serenelli, S. Basu, J. W. Ferguson, and M. Asplund, “New solar composition: the problem with solar models revisited,” Astrophysical Journal Letters, vol. 705, no. 2, pp. L123–L127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. I. W. Roxburgh and S. V. Vorontsov, “The ratio of small to large separations of acoustic oscillations as a diagnostic of the interior of solar-like stars,” Astronomy & Astrophysics, vol. 411, pp. 215–220, 2003. View at Publisher · View at Google Scholar
  74. G. Bellini, J. Benziger, D. Bick et al., “First evidence of pep solar neutrinos by direct detection in borexino,” Physical Review Letters, vol. 108, Article ID 051302, 6 pages, 2012. View at Publisher · View at Google Scholar
  75. D. D. Clayton, Principles of Stellar Evolution and Nucleosynthesis, University of Chicago Press, 1984.
  76. J. N. Bahcall and M. H. Pinsonneault, “What do we (not) know theoretically about solar neutrino fluxes?” Physical Review Letters, vol. 92, no. 12, Article ID 121301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Formicola, G. Imbrianib, H. Costantini et al., “Astrophysical S-factor of 14N(p,γ)15O,” Physics Letters B, vol. 591, pp. 61–68, 2004. View at Publisher · View at Google Scholar
  78. M. Marta, A. Formicola, Gy. Gyürky et al., “Precision study of ground state capture in the 14N(p,γ)15O reaction,” Physical Review C, vol. 78, Article ID 022802, 4 pages, 2008. View at Google Scholar
  79. W. C. Haxton and A. M. Serenelli, “CN cycle solar neutrinos and the Sun's primordial core metallicity,” Astrophysical Journal Letters, vol. 687, no. 1, pp. 678–691, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. J. N. Bahcall, A. M. Serenelli, and S. Basu, “10,000 Standard solar models: a monte carlo simulation,” Astrophysical Journal, Supplement Series, vol. 165, no. 1, pp. 400–431, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. J. N. Bahcall and A. M. Serenelli, “How do uncertainties in the surface chemical composition of the sun affect the predicted solar neutrino fluxes?” Astrophysical Journal, vol. 626, no. 1, pp. 530–542, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. P. C. de Holanda and A. Y. Smirnov, “Solar neutrinos: global analysis with day and night spectra from SNO,” Physical Review D, vol. 66, Article ID 113005, 10 pages, 2002. View at Google Scholar
  83. P. C. de Holanda and A. Y. Smirnov, “LMA MSW solution of the solar neutrino problem and first KamLAND results,” Journal of Cosmology and Astroparticle Physics, vol. 2003, no. 2, p. 1, 2003. View at Publisher · View at Google Scholar
  84. J. N. Bahcall, M. C. Gonzalez-Garcia, and C. Peña-Garay, “Before and after: how has the SNO neutral current measurement changed things?” Journal of High Energy Physics, vol. 207, p. 54, 2002. View at Google Scholar
  85. J. N. Bahcall, M. C. Gonzalez-Garcia, and C. Peña-Garay, “Solar neutrinos before and after KamLAND,” Journal of High Energy Physics, vol. 302, p. 9, 2003. View at Publisher · View at Google Scholar
  86. G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, and A. M. Rotunno, “Solar neutrino oscillation parameters after first KamLAND results,” Physical Review D, vol. 67, no. 7, Article ID 073002, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Pascoli and S. T. Petcov, “The SNO solar neutrino data, neutrinoless double beta-decay and neutrino mass spectrum,” Physics Letters B, vol. 544, pp. 239–250, 2002. View at Publisher · View at Google Scholar
  88. M. Maltoni, T. Schwetz, and J. W. F. Valle, “Combining first KamLAND results with solar neutrino data,” Physical Review D, vol. 67, Article ID 093003, 2003. View at Google Scholar
  89. P. Aliani, V. Antonelli, M. Picariello, and E. Torrente-Lujan, “The Neutrino mass matrix after Kamland and SNO salt enhanced results,” http://arxiv.org/abs/hep-ph/0309156. In press.
  90. P. Aliani, V. Antonelli, M. Picariello, and E. Torrente-Lujan, “Neutrino mass parameters from Kamland, SNO, and other solar evidence,” Physical Review D, vol. 69, no. 1, Article ID 013005, 7 pages, 2004. View at Publisher · View at Google Scholar
  91. A. Bandyopadhyay, S. Choubey, S. Goswami, and D. P. Roy, “Implications of the first neutral current data from SNO for solar neutrino oscillation,” Physics Letters B, vol. 540, no. 1-2, pp. 14–19, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. V. Barger, D. Marfatia, K. Whisnant, and B. P. Wood, “Imprint of SNO neutral current data on the solar neutrino problem,” Physics Letters B, vol. 537, no. 3-4, pp. 179–186, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. S. M. Bilenky, C. Giunti, J. A. Grifols, and E. Massó, “Absolute values of neutrino masses: status and prospects,” Physics Reports, vol. 379, no. 2, pp. 69–148, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. B. Aharmim, S. N. Ahmed, A. E. Anthony et al., “Electron energy spectra, fluxes, and day-night asymmetries of 8B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory,” Physical Review C, vol. 72, Article ID 055502, 47 pages, 2005. View at Publisher · View at Google Scholar
  95. M. B. Smy, Y. Ashie, S. Fukuda et al., “Precise measurement of the solar neutrino day-night and seasonal variation in Super-Kamiokande-I,” Physical Review D, vol. 69, Article ID 011104, 5 pages, 2004. View at Publisher · View at Google Scholar
  96. P. Langacker, S. T. Petcov, G. Steigman, and S. Toshev, “Implications of the mikheyev-smirnov-wolfenstein (MSW) mechanism of amplification of neutrino oscillations in matter,” Nuclear Physics B, vol. 282, pp. 589–609, 1987. View at Google Scholar · View at Scopus
  97. S. T. Petcov, “Exact analytic description of two-neutrino oscillations in matter with exponentially varying density,” Physics Letters B, vol. 200, pp. 373–379, 1988. View at Publisher · View at Google Scholar
  98. S. T. Petcov, “Describing analytically the matter-enhanced two-neutrino transitions in a medium,” Physics Letters B, vol. 406, pp. 355–365, 1997. View at Publisher · View at Google Scholar
  99. P. I. Krastev and S. T. Petcov, “Resonance amplification and T-violation effects in three-neutrino oscillations in the earth,” Physics Letters B, vol. 205, pp. 84–92, 1988. View at Publisher · View at Google Scholar
  100. P. I. Krastev and S. T. Petcov, “Testing the vacuum oscillation and the MSW solutions of the solar neutrino problem,” Nuclear Physics B, vol. 449, pp. 605–627, 1995. View at Publisher · View at Google Scholar
  101. M. Chizhov, M. Maris, and S. T. Petcov, “On the oscillation length resonance in the transitions of solar and atmospheric neutrinos crossing the earth core,” submitted, http://arxiv.org/abs/hep-ph/9810501.
  102. P. C. de Holanda, W. Liao, and A. Y. Smirnov, “Toward precision measurements in solar neutrinos,” Nuclear Physics B, vol. 702, no. 1-2, pp. 307–332, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. A. N. Ioannisian, N. A. Kazarian, A. Y. Smirnov, and D. Wyler, “Precise analytical description of the Earth matter effect on oscillations of low energy neutrinos,” Physical Review D, vol. 71, no. 3, Article ID 033006, 8 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. E. K. Akhmedov, M. A. Tortola, and J. W. F. Valle, “A simple analytic three-flavour description of the day-night effect in the solar neutrino flux,” Journal of High Energy Physics, vol. 405, p. 57, 2004. View at Publisher · View at Google Scholar
  105. A. Friedland, C. Lunardini, and C. Peña-Garay, “Solar neutrinos as probes of neutrino–matter interactions,” Physics Letters B, vol. 594, pp. 347–354, 2004. View at Publisher · View at Google Scholar
  106. W. Liao, “Precise formulation of neutrino oscillation in the earth,” Physical Review D, vol. 77, Article ID 053002, 11 pages, 2008. View at Google Scholar
  107. P. Aliani, V. Antonelli, M. Picariello, and E. Torrente-Lujan, “Global analysis of Solar neutrino oscillation evidence including SNO and implications for Borexino,” Nuclear Physics B, vol. 634, no. 1-2, pp. 393–409, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. E. Torrente-Lujan, “Finite dimensional systems with random external fields and neutrino propagation in fluctuating media,” Physical Review D, vol. 59, Article ID 073001, 7 pages, 1999. View at Google Scholar
  109. D. Dooling, C. Giunti, K. Kang, and C. W. Kim, “Matter effects in four-neutrino mixing,” Physical Review D, vol. 61, Article ID 073011, 18 pages, 2000. View at Google Scholar
  110. J. Hosaka, K. Ishihara, J. Kameda et al., “Solar neutrino measurements in Super-Kamiokande-I,” Physical Review D, vol. 73, Article ID 112001, 33 pages, 2006. View at Publisher · View at Google Scholar
  111. C. Arpesella, H. O. Back, M. Balata et al., “Direct measurement of the 7Be solar neutrino flux with 192 days of Borexino data,” Physical Review Letters, vol. 101, Article ID 091302, 6 pages, 2008. View at Publisher · View at Google Scholar
  112. B. Aharmim, S. N. Ahmed, A. E. Anthony et al., “Low-energy-threshold analysis of the Phase I and Phase II data sets of the Sudbury Neutrino Observatory,” Physical Review C, vol. 81, Article ID 055504, 49 pages, 2010. View at Publisher · View at Google Scholar
  113. B. Aharmim, Q. R. Ahmad, S. N. Ahmed et al., “Determination of the νe and total 8B solar neutrino fluxes using the Sudbury Neutrino Observatory Phase I data set,” Physical Review C, vol. 75, Article ID 045502, 69 pages, 2007. View at Publisher · View at Google Scholar
  114. J. P. Cravens, K. Abe, T. Iida et al., “Solar neutrino measurements in Super-Kamiokande-II,” Physical Review D, vol. 78, Article ID 032002, 11 pages, 2008. View at Publisher · View at Google Scholar
  115. K. Abe, Y. Hayato, T. Iida et al., “Solar neutrino results in Super-Kamiokande-III,” Physical Review D, vol. 83, Article ID 052010, 19 pages, 2011. View at Publisher · View at Google Scholar
  116. M. Smy, “Low energy neutrino astronomy in super-kamiokande,” in Proceedings of the Meeting of the American Physical Society Division of Particles and Fields at Brown University, 2011, http://arxiv.org/abs/1110.0012.
  117. G. Alimonti, C. Arpesella, H. Backc et al., “The Borexino detector at the Laboratori Nazionali del Gran Sasso,” Nuclear Instruments and Methods in Physics Research A, vol. 600, pp. 568–593, 2009. View at Publisher · View at Google Scholar
  118. C. Peña-Garay, “talk at the conference Neutrino Telescopes 2007,” March, Venice, Italy, 2007, http://neutrino.pd.infn.it/conference2007/.
  119. C. Arpesella, G. Bellinib, J. Benziger et al., “First real time detection of 7Be solar neutrinos by Borexino,” Physics Letters B, vol. 658, pp. 101–108, 2008. View at Publisher · View at Google Scholar
  120. G. Alimonti, G. Anghloher, C. Arpesella et al., “Ultra-low background measurements in a large volume underground detector,” Astroparticle Physics, vol. 8, pp. 141–157, 1998. View at Publisher · View at Google Scholar
  121. G. Alimonti, C. Arpesella, H. Back et al., “Science and technology of Borexino: a real-time detector for low energy solar neutrinos,” Astroparticle Physics, vol. 16, pp. 205–234, 2002. View at Publisher · View at Google Scholar
  122. C. Arpesella, H. O. Back, M. Balata et al., “Measurements of extremely low radioactivity levels in BOREXINO,” Astroparticle Physics, vol. 18, no. 1, pp. 1–25, 2002. View at Publisher · View at Google Scholar
  123. A. Ianni, P. Lombardi, G. Ranucci, and O. Smirnov, “The measurements of 2200 ETL9351 type photomultipliers for the Borexino experiment with the photomultiplier testing facility at LNGS,” Nuclear Instruments and Methods in Physics Research A, vol. 537, pp. 683–697, 2005. View at Publisher · View at Google Scholar
  124. A. Brigatti, A. Ianni, P. Lombardi, G. Ranucci, and O. J. Smirnov, “The photomultiplier tube testing facility for the Borexino experiment at LNGS,” Nuclear Instruments and Methods in Physics Research A, vol. 537, no. 3, pp. 521–536, 2005. View at Publisher · View at Google Scholar · View at Scopus
  125. L. Oberauer, C. Grieb, F. von Feilitzsch, and I. Manno, “Light concentrators for Borexino and CTF,” Nuclear Instruments and Methods in Physics Research A, vol. 530, no. 3, pp. 453–462, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. Borexino Collaboration, “The Borexino detector at the Laboratori Nazionali del Gran Sasso,” Nuclear Instruments and Methods in Physics Research A, vol. 600, pp. 568–593, 2009. View at Publisher · View at Google Scholar
  127. H. Simgen and G. Zuzel, “Ultrapure gases—from the production plant to the laboratory,” in Proceedings of the Topical Workshop on Low Radioactivity Techniques (LRT '06), P. Loaiza, Ed., vol. 897, pp. 45–50, American Institute of Physics, France, 2006.
  128. J. N. Bahcall, A. M. Serenelli, and S. Basu, “10,000 Standard solar models: a Monte Carlo simulation,” The Astrophysical Journal Supplement Series, vol. 165, p. 400, 2006. View at Publisher · View at Google Scholar
  129. G. Bellini, J. Benziger, D. Bick et al., “Precision measurement of the 7Be solar neutrino interaction rate in Borexino,” Physical Review Letters, vol. 107, Article ID 141302, 5 pages, 2011. View at Publisher · View at Google Scholar
  130. S. Basu, “Astronomical Society of the Pacific Conference Series,” vol. 416, pp. 193, 2009.
  131. S. Davini, Measurement of the pep and CNO solar neutrino interaction rates in Borexino [Ph.D. thesis], University of Genova, 2012.
  132. C. Galbiati, A. Pocar, D. Franco, A. Ianni, L. Cadonati, and S. Schönert, “Cosmogenic 11C production and sensitivity of organic scintillator detectors to pep and CNO neutrinos,” Physical Review C, vol. 71, Article ID 055805, 11 pages, 2005. View at Publisher · View at Google Scholar
  133. G. Bellini, J. Benziger, D. Bick et al., “Muon and cosmogenic neutron detection in Borexino,” Journal of Instrumentation, vol. 6, Article ID P05005, 2011. View at Google Scholar
  134. M. Deutsch, Proposal for a Cosmic Ray Detection System for the Borexino Solar Neutrino Experiment, Massachusetts Institute of Technology, Cambridge, Mass, USA, 1996.
  135. H. Back and Borexino Collaboration, “CNO and pep neutrino spectroscopy in Borexino: measurement of the deep-underground production of cosmogenic 11C in an organic liquid scintillator,” Physical Review C, vol. 74, Article ID 045805, 6 pages, 2006. View at Google Scholar
  136. Y. Kino, The Journal of Nuclear and Radiochemical Sciences, vol. 1, pp. 63–68, 2000.
  137. D. Franco, G. Consolati, and D. Trezzi, “Positronium signature in organic liquid scintillators for neutrino experiments,” Physical Review C, vol. 83, Article ID 015504, 6 pages, 2011. View at Publisher · View at Google Scholar
  138. TMVA Users Guide, http://tmva.sourceforge.net/docu/%20TMVAUsersGuide.pdf.
  139. W. Maneschg, L. Baudis, R. Dressler et al., “Production and characterization of a custom-made 228Th source with reduced neutron source strength for the Borexino experiment,” Nuclear Instruments and Methods in Physics Research A, vol. 680, pp. 161–167, 2012. View at Publisher · View at Google Scholar
  140. L. Wolfenstein, “Neutrino oscillations in matter,” Physical Review D, vol. 17, pp. 2369–2374, 1978. View at Publisher · View at Google Scholar
  141. L. Wolfenstein, “Effect of matter on neutrino oscillations,” in Proceedings of the Neutrino, pp. C3–C6, Purdue University, 1978.
  142. S. P. Mikheev and A. Y. Smirnov, “Resonant amplification of neutrino oscillations in matter and solar-neutrino spectroscopy,” Soviet Journal of Nuclear Physics, vol. 42, pp. 913–917, 1985. View at Google Scholar
  143. S. P. Mikheev and A. Y. Smirnov, “Resonance enhancement of oscillations in matter and solar neutrino spectroscopy,” Yadernaya Fizika, vol. 42, pp. 1441–1448, 1985. View at Google Scholar
  144. S. P. Mikheev and A. Y. Smirnov, “Resonant amplification of ν oscillations in matter and solar-neutrino spectroscopy,” Nuovo Cimento C, vol. 9, no. 1, pp. 17–26, 1986. View at Google Scholar
  145. V. E. Zakharov and E. A. Kuznetsov, “Quasiclassical theory of three-dimensional wave collapse,” Soviet Physics, JETP, vol. 64, no. 4, pp. 773–780, 1986, reprinted in: Solar neutrinos: the first thirty years, edited by: J. N. Bahcall. View at Google Scholar
  146. K. Nakamura and Particle Data Group, “Review of particle physics,” Journal of Physics G, vol. 37, no. 7, Article ID 075021, 2010. View at Publisher · View at Google Scholar
  147. B. Aharmim, S. N. Ahmed, A. E. Anthony et al., “Combined analysis of all three phases of solar neutrino data from the sudbury neutrino observatory,” In press, http://arxiv.org/abs/1109.0763.
  148. J. N. Bahcall, M. Kamionkowski, and A. Sirlin, “Solar neutrinos: radiative corrections in neutrino-electron scattering experiments,” Physical Review D, vol. 51, no. 11, pp. 6146–6158, 1995. View at Publisher · View at Google Scholar · View at Scopus
  149. J. Erler and M. J. Ramsey-Musolf, “The Weak mixing angle at low energies,” Physical Review D, vol. 72, Article ID 073003, 2005. View at Google Scholar
  150. J. N. Abdurashitov, V. N. Gavrin, V. V. Gorbachev et al., “Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002—2007 data-taking period,” Physical Review C, vol. 80, Article ID 015807, 16 pages, 2009. View at Publisher · View at Google Scholar
  151. M. Altmann, M. Balatab, P. Belli et al., “Complete results for five years of GNO solar neutrino observations,” Physics Letters B, vol. 616, pp. 174–190, 2005. View at Publisher · View at Google Scholar
  152. F. Kaether, Datenanalyse der Sonnenneutrinoexperiments Gallex [Ph.D. thesis], Heidelberg, Germany, 2007.
  153. B. T. Cleveland, T. Daily, R. Davis Jr. et al., “Measurement of the solar electron neutrino flux with the homestake chlorine detector,” The Astrophysical Journal, vol. 496, no. 1, p. 505, 1998. View at Publisher · View at Google Scholar
  154. G. Bellini, J. Benziger, S. Bonetti et al., “Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector,” Physical Review D, vol. 82, Article ID 033006, 10 pages, 2010. View at Publisher · View at Google Scholar
  155. K. Abe, N. Abgrall, Y. Ajima et al., “Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam,” Physical Review Letters, vol. 107, Article ID 041801, 8 pages, 2011. View at Google Scholar
  156. P. Adamson, D. J. Auty, D. S. Ayres et al., “Improved search for muon-neutrino to electron-neutrino oscillations in MINOS,” Physical Review Letters, vol. 107, Article ID 181802, 5 pages, 2011. View at Google Scholar
  157. G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo, and A. M. Rotunno, “Evidence of θ13>0 from global neutrino data analysis,” Physical Review D, vol. 84, Article ID 053007, 7 pages, 2011. View at Publisher · View at Google Scholar
  158. M. Apollonio, A. Baldini, C. Bemporad et al., “Search for neutrino oscillations on a long base-line at the CHOOZ nuclear power station,” The European Physical Journal C, vol. 27, pp. 331–374, 2003. View at Publisher · View at Google Scholar
  159. Y. Abe, C. Aberle, T. Akiri et al., “Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment,” Physical Review Letters, vol. 108, Article ID 131801, 7 pages, 2012. View at Google Scholar
  160. C. Giunti and M. Laveder, “Effect of the reactor antineutrino anomaly on the first Double-Chooz results,” Physical Review D, vol. 85, Article ID 031301, 4 pages, 2012. View at Google Scholar
  161. F. P. An, J. Z. Bai, A. B. Balantekin et al., “Observation of electron-antineutrino disappearance at daya bay,” Physical Review Letters, vol. 108, Article ID 171803, 7 pages, 2012. View at Google Scholar
  162. J. K. Ahn, S. Chebotaryov, J. H. Choi et al., “Observation of reactor electron antineutrinos disappearance in the RENO experiment,” Physical Review Letters, vol. 108, Article ID 191802, 6 pages, 2012. View at Publisher · View at Google Scholar
  163. D. Dwyer, for the Daya-Bay Collaboration, talk at Neutrino, 2012.
  164. G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, and A. M. Rotunno, “Global analysis of neutrino masses, mixings, and phases: entering the era of leptonic CP violation searches,” Physical Review D, vol. 86, Article ID 013012, 10 pages, 2012. View at Google Scholar
  165. D. V. Forero, M. Tortola, and J. W. F. Valle, “Global status of neutrino oscillation parameters after Neutrino-2012,” Physical Review D, vol. 86, Article ID 073012, 8 pages, 2012. View at Google Scholar
  166. T. Schwetz, “talk at NuTURN 2012,” Workshop on Neutrino at the Turning Point, Laboratori Nazionali del Gran Sasso, Italy, 2012, http://agenda.infn.it/conferenceDisplay.py?confId=4722.
  167. “talk at what is NU ?” Workshop at the Galileo Galilei Institute, Florence, Italy, 2012, http://www.ggi.fi.infn.it/.
  168. A. Friedland, C. Lunardini, and C. Peña-Garay, “Solar neutrinos as probes of neutrino–matter interactions,” Physics Letters B, vol. 594, pp. 347–354, 2004. View at Publisher · View at Google Scholar
  169. P. C. de Holanda and A. Y. Smirnov, “Solar neutrino spectrum, sterile neutrinos, and additional radiation in the Universe,” Physical Review D, vol. 83, Article ID 113011, 13 pages, 2011. View at Publisher · View at Google Scholar
  170. M. Spiro and D. Vignaud, “Solar model independent neutrino oscillatiion signals in the forthcoming solar neutrino experiments?” Physics Letters B, vol. 242, pp. 279–284, 1990. View at Publisher · View at Google Scholar
  171. J. N. Bahcall, “The luminosity constraint on solar neutrino fluxes,” Physical Review C, vol. 65, Article ID 025801, 5 pages, 2002. View at Publisher · View at Google Scholar
  172. M. C. González-García, M. Maltoni, and J. Salvado, “Updated global fit to three neutrino mixing: status of the hints of θ13>0,” Journal of High Energy Physics, vol. 2010, no. 4, article 56, 2010. View at Google Scholar
  173. J. N. Bahcall and C. Peña-Garay, “A road map to solar neutrino fluxes, neutrino oscillation parameters, and tests for new physics,” Journal of High Energy Physics, vol. 311, p. 4, 2003. View at Publisher · View at Google Scholar
  174. A. Chavarria, “Solar neutrinos in 2011,” In press, http://arxiv.org/abs/1201.6311.
  175. J. Boger, R. L. Hahna, J. K. Rowley et al., “The sudbury neutrino observatory,” Nuclear Instruments and Methods in Physics Research A, vol. 449, pp. 172–207, 2000. View at Publisher · View at Google Scholar
  176. S. Fukuda, Y. Fukuda, T. Hayakaw et al., “The Super-Kamiokande detector,” Nuclear Instruments and Methods in Physics Research A, vol. 501, pp. 418–462, 2003. View at Publisher · View at Google Scholar
  177. J. N. Abdurashitov, V. N. Gavrin, S. V. Girin et al., “Measurement of the solar neutrino capture rate with gallium metal,” Physical Review C, vol. 60, Article ID 055801, 32 pages, 1999. View at Publisher · View at Google Scholar
  178. C. Kraus and S. J. M. Peetersa, “The rich neutrino programme of the SNO+ experiment,” Progress in Particle and Nuclear Physics, vol. 64, pp. 273–277, 2010. View at Publisher · View at Google Scholar
  179. F. L. Villante, A. Ianni, F. Lombardi, G. Pagliaroli, and F. Vissani, “A step toward CNO solar neutrino detection in liquid scintillators,” Physics Letters B, vol. 701, no. 3, pp. 336–341, 2011. View at Publisher · View at Google Scholar · View at Scopus
  180. D. N. McKinsey and K. J. Coakley, “Neutrino detection with CLEAN,” Astroparticle Physics, vol. 22, no. 5-6, pp. 355–368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  181. E. Aprile and T. Doke, “Liquid xenon detectors for particle physics and astrophysics,” Reviews of Modern Physics, vol. 82, pp. 2053–2097, 2010. View at Publisher · View at Google Scholar
  182. A. Baldini, “Research Proposal to INFN, The MEG experiment, search for the ueγ decay at PSI,” 2002.
  183. S. Moriyama, “Status of XMASS experiment,” PoS IDM, vol. 2011, p. 57, 2010. View at Google Scholar
  184. K. Kobayashi, “XMASS experiment, talk given at the TeV Particle Astrophysics 2010,” Paris, France, July 2010.
  185. L. Baudis, “DARWIN: dark matter WIMP search with noble liquids,” Journal of Physics, vol. 375, part 1, Article ID 012028, 2012. View at Publisher · View at Google Scholar
  186. M. Wurm, J. F. Beacomc, L. B. Bezrukov et al., “The next-generation liquid-scintillator neutrino observatory LENA,” Astroparticle Physics, vol. 35, pp. 685–732, 2012. View at Publisher · View at Google Scholar
  187. H. O. Backa, M. Balata, A. de Bari et al., “Study of phenylxylylethane (PXE) as scintillator for low energy neutrino experiments,” Nuclear Instruments and Methods in Physics Research A, vol. 585, no. 12, pp. 48–60, 2008. View at Google Scholar
  188. C. Arpesella, H. O. Back, M. Balata et al., “Direct measurement of the 7Be solar neutrino flux with 192 days of borexino data,” Physical Review Letters, vol. 101, Article ID 091302, 6 pages, 2008. View at Publisher · View at Google Scholar
  189. M. Wurm, Cosmic background discrimination for the rare neutrino event search in Borexino and LENA [Ph.D. thesis], Technische Universität München, 2009.
  190. D. D'Angelo, Towards the detection of low energy solar neutrinos in BOREXino: data readout, data reconstruction and background identification [Ph.D. thesis], Technische Universität München, 2006.
  191. A. Ianni, D. Montanino, and F. L. Villante, “How to observe 8B solar neutrinos in liquid scintillator detectors,” Physics Letters B, vol. 627, pp. 38–48, 2005. View at Publisher · View at Google Scholar
  192. R. S. Raghavan, “Inverse β decay of 115In → 115Sn*: a new possibility for detecting solar neutrinos from the Proton-Proton reaction,” Physical Review Letters, vol. 37, pp. 259–262, 1976. View at Publisher · View at Google Scholar
  193. R. S. Raghavan, “Discovery potential of low energy solar neutrino experiments,” Notes for APSSAWG, March 2004.
  194. H. Antia and S. Basu, “The discrepancy between solar abundances and helioseismology,” The Astrophysical Journal Letters, vol. 620, p. L129, 2005. View at Publisher · View at Google Scholar
  195. J. N. Bahcall, S. Basu, and A. M. Serenelli, “What is the neon abundance of the sun?” Astrophysical Journal Letters, vol. 631, no. 2, pp. 1281–1285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  196. J. A. Guzik, L. S. Watson, and A. N. Cox, “Can enhanced diffusion improve helioseismic agreement for solar models with revised abundances?” Astrophysical Journal, vol. 627, no. 2, pp. 1049–1056, 2005. View at Publisher · View at Google Scholar · View at Scopus
  197. M. Castro, S. Vauclair, and P. Richard, “Low abundances of heavy elements in the solar outer layers: comparisons of solar models with helioseismic inversions,” Astronomy & Astrophysics, vol. 463, pp. 755–758, 2007. View at Publisher · View at Google Scholar
  198. J. Christensen-Dalsgaard, M. P. di Mauro, G. Houdex, and F. Pijpers, “On the opacity change required to compensate for the revised solar composition,” Astronomy & Astrophysics, vol. 494, pp. 205–208, 2009. View at Publisher · View at Google Scholar
  199. A. M. Serenelli, “New results on standard solar models,” Astrophysics and Space Science, vol. 328, pp. 13–21, 2010. View at Publisher · View at Google Scholar
  200. F. L. Villante and B. Ricci, “Linear solar models,” Astrophysical Journal Letters, vol. 714, no. 1, pp. 944–959, 2010. View at Publisher · View at Google Scholar · View at Scopus
  201. F. L. Villante, “Constraints on the opacity profile of the sun from helioseismic observables and solar neutrino flux measurements,” The Astrophysical Journal, vol. 724, p. 98, 2010. View at Publisher · View at Google Scholar
  202. J. Barranco, O. G. Miranda, C. A. Moura, and J. W. F. Valle, “Constraining nonstandard neutrino-electron interactions,” Physical Review D, vol. 77, no. 9, Article ID 093014, 10 pages, 2008. View at Publisher · View at Google Scholar
  203. H. A. Bethe, “Energy production in stars,” Physical Review, vol. 55, pp. 434–456, 1939. View at Publisher · View at Google Scholar
  204. A. A. Thoul, J. N. Bahcall, and A. Loeb, “Element diffusion in the solar interior,” Astrophysical Journal Letters, vol. 421, no. 2, pp. 828–842, 1994. View at Google Scholar · View at Scopus
  205. F. Delahaye, M. H. Pinsonneault, L. Pinsonneault, and C. J. Zeippen, “Helioseismic constraints on the solar Ne/O ratio and heavy element abundances,” submitted, http://arxiv.org/abs/1005.0423.
  206. J. Meléndez, M. Asplund, B. Gustafsson, and D. Yong, “The peculiar solar composition and its possible relation to planet formation,” The Astrophysical Journal Letters, vol. 704, p. L66, 2009. View at Publisher · View at Google Scholar
  207. I. Ramírez, M. Asplund, P. Baumann, J. Meléndez, and T. Bensby, “A possible signature of terrestrial planet formation in the chemical composition of solar analogs,” Astronomy & Astrophysics, vol. 512, p. 33, 2010. View at Publisher · View at Google Scholar