Table of Contents Author Guidelines Submit a Manuscript
Advances in High Energy Physics
Volume 2013 (2013), Article ID 560192, 7 pages
Research Article

Cosmic Muon Detection for Geophysical Applications

1Department of Physics of Complex Systems, Eötvös University, 1/A Pázmány P. sétány, 1117 Budapest, Hungary
2Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, 29-33 Konkoly-Thege Miklós Street, 1121 Budapest, Hungary
3Budapest University of Technology and Economics, 3-9 Műegyetem rkp., 1111 Budapest, Hungary
4Geological, Geophysical and Space Science Research Group of the HAS, Eötvös University, 1/C Pázmány P. sétány, 1117 Budapest, Hungary

Received 5 January 2013; Accepted 31 March 2013

Academic Editor: Jacek Szabelski

Copyright © 2013 László Oláh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A portable cosmic muon detector has been developed for environmental, geophysical, or industrial applications. The device is a tracking detector based on the Close Cathode Chamber, an MWPC-like technology, allowing operation in natural underground caves or artificial tunnels, far from laboratory conditions. The compact, low power consumption system with sensitive surface of 0.1 m2 measures the angular distribution of cosmic muons with a resolution of 10 mrad, allowing for a detailed mapping of the rock thickness above the muon detector. Demonstration of applicability of the muon telescope (REGARD Muontomograph) for civil engineering and measurements in artificial underground tunnels or caverns are presented.