Table of Contents Author Guidelines Submit a Manuscript
Advances in High Energy Physics
Volume 2013, Article ID 612582, 6 pages
http://dx.doi.org/10.1155/2013/612582
Research Article

Nanographite Films for Solid State Electronic Applications

Institute for Nuclear Research of Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, Moscow 117312, Russia

Received 10 April 2013; Revised 17 June 2013; Accepted 14 July 2013

Academic Editor: Cristina Sbarra

Copyright © 2013 Sergey G. Lebedev. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Antonowicz, L. Cacha, and J. Turlo, “Switching phenomena in glassy carbon,” Carbon, vol. 11, no. 1, pp. 1–5, 1973. View at Google Scholar · View at Scopus
  2. K. Antonowicz, A. Jesmanowicz, and J. Wieczorek, “Switching phenomena in amorphous carbon,” Carbon, vol. 10, no. 1, pp. 81–84, 1972. View at Google Scholar · View at Scopus
  3. K. Antonowicz, “Effect of microwaves on DC current in an Al-carbon-Al sandwich,” Physica Status Solidi A, vol. 28, no. 2, pp. 497–502, 1975. View at Google Scholar · View at Scopus
  4. K. Antonowicz, “Possible superconductivity at room temperature,” Nature, vol. 247, no. 5440, pp. 358–360, 1974. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Z. Jang and L. Zhao, “Anomalous electrical behavior of partially carbonized polyacrylonitrile fibers,” Journal of Materials Research, vol. 10, no. 10, pp. 2449–2453, 1995. View at Google Scholar · View at Scopus
  6. H. A. Goldberg, I. L. Kalnin, C. C. Williams, and I. L. Spain, US Patent 4,642,664, 1987.
  7. M. W. Geis, J. C. Twichell, N. N. Efremow, K. Krohn, and T. M. Lyszczarz, “Comparison of electric field emission from nitrogen-doped, type Ib diamond, and boron-doped diamond,” Applied Physics Letters, vol. 68, no. 16, pp. 2294–2296, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Salvatori, E. Brugnoli, M. C. Rossi, and F. Pinzari, “Field- and photo-emission properties of CVD-diamond with different microcrystalline structure,” Diamond and Related Materials, vol. 10, no. 3–7, pp. 852–857, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. R. K. Roy, S. Gupta, B. Deb, and A. K. Pal, “Electron field emission properties of electro-deposited diamond-like carbon coatings,” Vacuum, vol. 70, no. 4, pp. 543–549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. T. Kuo, P. W. May, and M. N. R. Ashfold, “Field emission site density studies of amorphous carbon films,” Diamond and Related Materials, vol. 11, no. 7, pp. 1422–1428, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. W. I. Miline, J. T. H. Tsai, and K. B. K. Teo, “Novel field emission structure based on tetrahedrally bonded amorphous carbon,” Diamond Related Materials, vol. 12, no. 2, pp. 195–200, 2003. View at Publisher · View at Google Scholar
  12. A. N. Obraztsov, A. P. Volkov, K. S. Nagovitsyn et al., “CVD growth and field emission properties of nanostructured carbon films,” Journal of Physics D, vol. 35, no. 4, pp. 357–362, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. S. G. Lebedev and S. V. Topalov, “Evidence of weak superconductivity in carbon films,” Bulletin of Lebedev’s Physical Institute N, no. 11-12, pp. 14–21, 1994. View at Google Scholar
  14. S. G. Lebedev, “Particle irradiation for verification of superconducting-like behavior in carbon arc films,” Nuclear Instruments and Methods in Physics Research A, vol. 521, no. 1, pp. 22–26, 2004. View at Publisher · View at Google Scholar
  15. S. G. Lebedev, V. E. Yants, and A. S. Lebedev, “Correlations between switching of conductivity and optical radiation observed in thin graphite-like films,” Nuclear Instruments and Methods in Physics Research A, vol. 590, no. 1–3, pp. 227–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. G. Lebedev, “Evidence of Josephson-like behaviour of thin granular carbon films,” International Review of Physics, vol. 2, p. 312, 2008. View at Google Scholar
  17. G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Y. P. Svirko, “Giant optical rectification effect in nanocarbon films,” Applied Physics Letters, vol. 84, no. 24, pp. 4854–4856, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Spieler, Semiconductor Detector Systems, Oxford University Press, Oxford, UK, 2005.
  19. L. Rossi, P. Fischer, T. Rohe, and N. Wermes, Pixel Detectors-from Fundamentals to Applications, Springer, New York, NY, USA, 2006.
  20. M. Friedl, W. Adam, C. Bauer et al., “CVD diamond detectors for ionizing radiation,” Nuclear Instruments and Methods in Physics Research, vol. 435, no. 1-2, pp. 194–201, 1999. View at Publisher · View at Google Scholar
  21. C. Z. Wang, K. M. Ho, and C. T. Chan, “Tight-binding molecular-dynamics study of amorphous carbon,” Physical Review Letters, vol. 70, no. 5, pp. 611–614, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. P. K. Chu and L. Li, “Characterization of amorphous and nanocrystalline carbon films,” Materials Chemistry and Physics, vol. 96, no. 2-3, pp. 253–277, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. G. Lebedev, V. E. Yants, and A. S. Lebedev, “Correlations between switching of conductivity and optical radiation observed in thin graphite-like films,” Nuclear Instruments and Methods in Physics Research A, vol. 590, no. 1–3, pp. 227–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. L. R. Zhao and B. Z. Jang, “Switching behaviours in semiconducting carbon fibres,” Journal of Materials Science Letters, vol. 15, no. 2, pp. 99–101, 1996. View at Google Scholar · View at Scopus
  25. S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Physical Review Letters, vol. 21, no. 20, pp. 1450–1453, 1968. View at Publisher · View at Google Scholar · View at Scopus
  26. S. S. K. Titus, R. Chatterjee, S. Asokan, and A. Kumar, “Electrical switching and short-range order in As-Te glasses,” Physical Review B, vol. 48, no. 19, pp. 14650–14652, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. N. F. Mott, “Conduction in non-crystalline systems VII. Non-ohmic behaviour and switching,” Philosophical Magazine, vol. 24, no. 190, pp. 911–934, 1971. View at Publisher · View at Google Scholar
  28. B. L. Altshuler, V. E. Kravtsov, I. V. Lerner, and I. L. Aleiner, “Jumps in current-voltage characteristics in disordered films,” Physical Review Letters, vol. 102, no. 17, Article ID 176803, pp. 803–806, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Ovadia, B. Sacepe, and D. Shahar, “Electron-phonon decoupling in disordered insulators,” Physical Review Letters, vol. 102, no. 17, pp. 176802–176803, 2009. View at Publisher · View at Google Scholar
  30. J. C. González, M. Muñoz, N. García et al., “Sample-size effects in the magnetoresistance of graphite,” Physical Review Letters, vol. 99, no. 21, Article ID 216601, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Timp, P. D. Dresselhaus, T. C. Chieu, G. Dresselhaus, and Y. Iye, “Anomalous magnetoresistance of graphite at high magnetic fields,” Physical Review B, vol. 28, no. 12, pp. 7393–7396, 1983. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. M. Wang, Q. Y. Xu, G. Ni, and Y. W. Du, “Huge magnetoresistance and Shubnikov-de Hass effect in graphite,” Physics Letters, vol. 314, no. 4, pp. 328–331, 2003. View at Publisher · View at Google Scholar
  33. K. Kuriyama and M. S. Dresselhaus, “Metal-insulator transition in highly disordered carbon fibers,” Journal of Materials Research, vol. 7, no. 4, pp. 940–945, 1992. View at Google Scholar · View at Scopus
  34. A. W. P. Fung, Z. H. Wang, M. S. Dresselhaus, G. Dresselhaus, R. W. Pekala, and M. Endo, “Coulomb-gap magnetotransport in granular and porous carbon structures,” Physical Review B, vol. 49, no. 24, pp. 17325–17335, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. S. G. Lebedev, Ed., Unconventional Electromagnetics in Carbonaceous Materials, Nova Science Publishers, Huntington, NY, USA, 2010.
  36. G. M. Mikheev, V. M. Styapshin, P. A. Obraztsov, E. A. Khestanova, and S. V. Garnov, “Effect of laser light polarisation on the dc photovoltage response of nanographite films,” Quantum Electronics, vol. 40, no. 5, pp. 425–430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. P. A. Obraztsov, G. M. Mikheev, S. V. Garnov, A. N. Obraztsov, and Y. P. Svirko, “Polarization-sensitive photoresponse of nanographite,” Applied Physics Letters, vol. 98, no. 9, Article ID 091903, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. V. L. Al’perovich, V. I. Belinicher, V. N. Novikov, and A. S. Terekhov, “Surface photovoltaic effect in solids. Theory and experiment for interband transitions in gallium arsenide,” Journal of Experimental and Theoretical Physics, vol. 53, no. 6, p. 1201, 1981. View at Google Scholar
  39. V. L. Gurevich and R. Laiho, “Photomagnetism of metals. First observation of dependence on polarization of light,” Physics of the Solid State, vol. 42, no. 10, pp. 1807–1812, 2000. View at Google Scholar · View at Scopus
  40. H. Sadate-Akhavi, J. T. Chen, A. M. Kadin, J. E. Keem, and S. R. Ovshinsky, “Observation of rf-induced dc voltages in sputtered binary superconducting films,” Solid State Communications, vol. 50, no. 11, pp. 975–978, 1984. View at Google Scholar · View at Scopus
  41. J. T. Chen, L. E. Wenger, C. J. McEwan, and E. M. Logothetis, “Observation of the Reverse ac Josephson Effect in Y-Ba-Cu-O at 240 K,” Physical Review Letters, vol. 58, no. 19, pp. 1972–1975, 1987. View at Publisher · View at Google Scholar · View at Scopus
  42. J. T. Chen, R. J. Todd, and Y. W. Kim, “Investigation of microwave-induced dc voltages across unbiased Josephson tunnel junctions,” Physical Review B, vol. 5, no. 5, pp. 1843–1849, 1972. View at Publisher · View at Google Scholar · View at Scopus
  43. E. A. Koptelov, S. G. Lebedev, and V. N. Panchenko, “A model of carbon stripper target failure under ion beam bombardment,” Nuclear Inst. and Methods in Physics Research, A, vol. 256, no. 2, pp. 247–250, 1987. View at Google Scholar · View at Scopus
  44. E. A. Koptelov, S. G. Lebedev, and V. N. Panchenko, “Radiation stability of carbon foil microstructure,” Nuclear Instruments and Methods in Physics Research B, vol. 42, no. 2, pp. 239–244, 1989. View at Google Scholar · View at Scopus
  45. J. Robertson, “Diamond-like amorphous carbon,” Materials Science and Engineering R, vol. 37, pp. 129–281, 2002. View at Google Scholar