Table of Contents Author Guidelines Submit a Manuscript
Advances in High Energy Physics
Volume 2014, Article ID 907067, 22 pages
http://dx.doi.org/10.1155/2014/907067
Review Article

Present Status and Future Perspectives of the NEXT Experiment

1Instituto de Física Corpuscular (IFIC), CSIC-Universidad de Valencia, Calle Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
2Departamento de Fisica, Universidad de Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
3Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbura 12, 50009 Zaragoza, Spain
4Lauwrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720, USA
5Instituto de Instrumentación para Imagen Molecular (I3M), UPV, Camino de Vera s/n, Edificio 8B, 46022 Valencia, Spain
6Joint Institute for Nuclear Research (JINR), Joliot-Curie 6, Dubna 141980, Russia
7Institute of Nanostructures, Nanomodelling and Nanofabrication (I3N), Universidad de Aviero, Campus de Santiago, 3810-193 Aveiro, Portugal
8Centro de Investigaciones, Universidad Antonio Nariño, Carretera 3 Este No. 47A-15, Bogota, Colombia
9Department of Physics and Astronomy, Iowa State University, 12 Physics Hall, Ames, IA 50011-3160, USA
10Instituto Gallego de Física de Altas Energías (IGFAE), Universidad de Santiago de Compostela, Campus Sur, Rua Xosé María Suarez Nuñez s/n, Campus Vida, 15782 Santiago de Compostela, Spain
11Departamento de Física Teórica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
12Departamento de Mecánica de Medios Continuos y Teoría de Estructuras, Universidad Politécnica de Valencia, Camino de Vera s/n, 46071 Valencia, Spain
13Instituto de Física Teórica (CSIC), UAM, Campus Cantoblanco, 28049 Madrid, Spain
14Escola Politécnica Superior, Universitat de Girona, Avenida Montilivi s/n, 17071 Girona, Spain
15Departament of Physics and Astronomy, Texas A & M University, College Station, TX 77843-4242, USA

Received 12 July 2013; Accepted 9 October 2013; Published 18 March 2014

Academic Editor: Vincenzo Flaminio

Copyright © 2014 J. J. Gómez Cadenas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3.

Linked References

  1. M. Auger, D. J. Auty, P. S. Barbeau et al., “Search for neutrinoless double-beta decay in 136Xe with EXO-200,” Physical Review Letters, vol. 109, no. 3, Article ID 032505, 6 pages, 2012. View at Publisher · View at Google Scholar
  2. A. Gando, Y. Gando, H. Hanakago et al., “Limit on neutrinoless ββ decay of 136Xe from the first phase of KamLAND-Zen and comparison with the positive claim in 76Ge,” Physical Review Letters, vol. 110, no. 6, Article ID 062502, 5 pages, 2013. View at Publisher · View at Google Scholar
  3. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan et al., “Planck 2013 results. XVI. cosmological parameters,” http://arxiv.org/abs/1303.5076.
  4. N. Haba and R. Takahashi, “Constraints on neutrino mass ordering and degeneracy from Planck and neutrino-less double beta decay,” http://arxiv.org/abs/1305.0147.
  5. E. Majorana, “Theory of the symmetry of electrons and positrons,” Il Nuovo Cimento, vol. 14, no. 4, pp. 171–184, 1937. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Hernández, “Neutrino physics,” CERN Yellow Report CERN 2010-001, 2010. View at Google Scholar
  7. M. Fukugita and T. Yanagida, “Barygenesis without grand unification,” Physics Letters B, vol. 174, no. 1, pp. 45–47, 1986. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Davidson, E. Nardi, and Y. Nir, “Leptogenesis,” Physics Reports, vol. 466, no. 4-5, pp. 105–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. H. V. Klapdor-Kleingrothaus, A. Dietz, L. Baudis et al., “Latest results from the Heidelberg-Moscow double beta decay experiment,” European Physical Journal A, vol. 12, no. 2, pp. 147–154, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, “The evidence for the observation of 0νββ decay: the identification of 0νββ events from the full spectra,” Modern Physics Letters A, vol. 21, no. 20, pp. 1547–1566, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. C. M. Cattadori, “GERDA status report: results from commissioning,” Journal of Physics, vol. 375, no. 4, Article ID 042008, 2012. View at Publisher · View at Google Scholar
  12. J. Wilkerson, E. Aguayo, F. Avignone, H. Back, A. Barabash et al., “The majorana demonstrator: a search for neutrinoless double-beta decay of germanium-76,” Journal of Physics, vol. 375, no. 4, Article ID 042010, 2012. View at Publisher · View at Google Scholar
  13. P. Gorla, “The CUORE experiment: status and prospects,” Journal of Physics, vol. 375, no. 4, Article ID 042013, 2012. View at Publisher · View at Google Scholar
  14. J. J. Gómez-Cadenas, J. Martín-Albo, M. Sorel et al., “Sense and sensitivity of double beta decay experiments,” Journal of Cosmology and Astroparticle Physics, vol. 2011, no. 6, article 007, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Sarazin, “Review of double beta experiments,” http://arxiv.org/abs/1210.7666.
  16. J. Maneira, “The SNO+ experiment: status and overview,” Journal of Physics, vol. 447, no. 1, Article ID 012065, 2013. View at Publisher · View at Google Scholar
  17. J. J. Gómez-Cadenas, J. Martín-Albo, M. Mezzetto, F. Monrabal, and M. Sorel, “The search for neutrinoless double beta decay,” Rivista del Nuovo Cimento, vol. 35, no. 2, pp. 29–98, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Cremonesi, “Experimental searches of neutrinoless double beta decay,” Nuclear Physics B, vol. 237-238, pp. 7–12, 2013. View at Publisher · View at Google Scholar
  19. A. Giuliani and A. Poves, “Neutrinoless double-beta decay,” Advances in High Energy Physics, vol. 2012, Article ID 857016, 38 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. K. Zuber, “Neutrinoless double beta decay experiments,” Acta Physica Polonica B, vol. 37, no. 7, Article ID 061000, pp. 1905–1921, 2006. View at Google Scholar
  21. M. Auger, D. Auty, P. Barbeau, L. Bartoszek, E. Baussan et al., “The EXO-200 detector, part I: detector design and construction,” Journal of Instrumentation, vol. 7, no. 5, Article ID P05010, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. A. Gando, Y. Gando, H. Hanakago et al., “Measurement of the double-β decay half-life of 136Xe with the KamLAND-Zen experiment,” Physical Review C, vol. 85, no. 4, Article ID 045504, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Álvareza, F. I. G. M. Borgesb, S. Cárcela et al., “NEXT-100 technical design report (TDR): executive summary,” Journal of Instrumentation, vol. 7, no. 6, Article ID T06001, 2012. View at Publisher · View at Google Scholar
  24. J. Albert, M. Auger, D.J. Auty et al., “An improved measurement of the 2νββ half-life of 136Xe with EXO-200,” http://arxiv.org/abs/1306.6106.
  25. Caltech-Neuchâtel-PSI Collaboration, R. Luscher et al., “Search for ββ decay in 136Xe: new results from the Gotthard experiment,” Physics Letters B, vol. 434, no. 3-4, pp. 407–414, 1998. View at Publisher · View at Google Scholar
  26. E. Conti, R. Devoe, G. Gratta et al., “Correlated uctuations between luminescence and ionization in liquid xenon,” Physical Review B, vol. 68, Article ID 054201, 5 pages, 2003. View at Publisher · View at Google Scholar
  27. J. Bergstrom, “Combining and comparing neutrinoless double beta decay experiments using different nuclei,” Journal of High Energy Physics, vol. 2013, no. 2, article 93, 2013. View at Publisher · View at Google Scholar
  28. J. Gómez-Cadenas, J. Martín-Albo, J. Munoz Vidal, and C. Pena-Garay, “Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations,” Journal of Cosmology and Astroparticle Physics, vol. 2013, no. 3, article 043, 2013. View at Publisher · View at Google Scholar
  29. V. Álvarez, F. I. G. M. Borges, S. Cárcel et al., “Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment,” Journal of Instrumentation, vol. 8, no. 5, Article ID P04002, 2013. View at Publisher · View at Google Scholar
  30. J. Martín-Albo and J. J. Gómez-Cadenas, “Status and physics potential of NEXT-100,” Journal of Physics, vol. 460, no. 1, Article ID 012010, 2013. View at Publisher · View at Google Scholar
  31. D. Nygren, “High-pressure xenon gas electroluminescent TPC for 0-νββ-decay search,” Nuclear Instruments and Methods in Physics Research Section A, vol. 603, no. 3, pp. 337–348, 2009. View at Publisher · View at Google Scholar
  32. V. Álvarez, M. Ball, M. Batallé et al., “The NEXT-100 experiment for neutrinoless double beta decay searches (conceptual design report),” http://arxiv.org/abs/1106.3630.
  33. K. Lung, K. Arisaka, A. Bargetzi et al., “Characterization of the Hamamatsu R11410-10 3-in. photomultiplier tube for liquid xenon dark matter direct detection experiments,” Nuclear Instruments and Methods in Physics Research Section A, vol. 696, pp. 32–39, 2012. View at Publisher · View at Google Scholar
  34. R. Collaboration, “Development of micro-pattern gas detectors technologies,” http://rd51-public.web.cern.ch/rd51-public/.
  35. V. Alvarez, I. Bandac, A. Bettini et al., “Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements,” Journal of Instrumentation, vol. 8, Article ID T01002, 2012. View at Publisher · View at Google Scholar
  36. E. Aprile, K. Arisaka, F. Arneodo et al., “Material screening and selection for XENON100,” Astroparticle Physics, vol. 35, no. 2, pp. 43–49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Agostinelli, J. Allisonas, K. Amakoe et al., “GEANT4— a simulation toolkit,” Nuclear Instruments and Methods in Physics Research Section A, vol. 506, no. 3, pp. 250–303, 2003. View at Google Scholar
  38. V. Álvarez, F. I. G. M. Borgesb, S. Cárcela et al., “Near-intrinsic energy resolution for 30–662 keV gamma rays in a high pressure xenon electroluminescent TPC,” Nuclear Instruments and Methods in Physics Research Section A, vol. 708, pp. 101–114, 2012. View at Publisher · View at Google Scholar
  39. V. Álvarez, F. I. G. M. Borges, S. Cárcel et al., “Ionization and scintillation response of high-pressurexenon gas to alpha particles,” Journal of Instrumentation, vol. 8, no. 5, Article ID P05025, 2013. View at Publisher · View at Google Scholar
  40. C. Silva, J. Pinto da Cunha, A. Pereira, V. Chepel, M. Lopes et al., “Reflectance of polytetrafluoroethylene (PTFE) for xenon scintillation light,” Journal of Applied Physics, vol. 107, no. 6, pp. 064902–064908, 2010. View at Publisher · View at Google Scholar
  41. V. Álvarez, F.I.G. Borges, S. Cárcel et al., “Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array,” Journal of Instrumentation, vol. 8, no. 9, Article ID P09011, 2013. View at Publisher · View at Google Scholar