Table of Contents Author Guidelines Submit a Manuscript
Advances in High Energy Physics
Volume 2015 (2015), Article ID 915928, 8 pages
Research Article

Axially Symmetric-dS Solution in Teleparallel Gravity Theories

1Centre for Theoretical Physics, The British University in Egypt, P.O. Box 43, Shorouk City 11837, Egypt
2Mathematics Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt

Received 2 February 2015; Revised 11 March 2015; Accepted 11 March 2015

Academic Editor: Elias C. Vagenas

Copyright © 2015 Gamal G. L. Nashed. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3.


We apply a tetrad field with six unknown functions to Einstein field equations. Exact vacuum solution, which represents axially symmetric-dS spacetime, is derived. We multiply the tetrad field of the derived solution by a local Lorentz transformation which involves a generalization of the angle and get a new tetrad field. Using this tetrad, we get a differential equation from the scalar torsion . Solving this differential equation we obtain a solution to the gravity theories under certain conditions on the form of and its first derivatives. Finally, we calculate the scalars of Riemann Christoffel tensor, Ricci tensor, Ricci scalar, torsion tensor, and its contraction to explain the singularities associated with this solution.