Table of Contents Author Guidelines Submit a Manuscript
Advances in High Energy Physics
Volume 2016 (2016), Article ID 6194250, 21 pages
http://dx.doi.org/10.1155/2016/6194250
Review Article

Current Status and Future Prospects of the SNO+ Experiment

S. Andringa,1 E. Arushanova,2 S. Asahi,3 M. Askins,4 D. J. Auty,5 A. R. Back,2,6 Z. Barnard,7 N. Barros,1,8 E. W. Beier,8 A. Bialek,5 S. D. Biller,9 E. Blucher,10 R. Bonventre,8 D. Braid,7 E. Caden,7 E. Callaghan,8 J. Caravaca,11,12 J. Carvalho,13 L. Cavalli,9 D. Chauhan,1,3,7 M. Chen,3 O. Chkvorets,7 K. Clark,3,6,9 B. Cleveland,7,14 I. T. Coulter,8,9 D. Cressy,7 X. Dai,3 C. Darrach,7 B. Davis-Purcell,15 R. Deen,8,9 M. M. Depatie,7 F. Descamps,11,12 F. Di Lodovico,2 N. Duhaime,7 F. Duncan,7,14 J. Dunger,9 E. Falk,6 N. Fatemighomi,3 R. Ford,7,14 P. Gorel,5 C. Grant,4 S. Grullon,8 E. Guillian,3 A. L. Hallin,5 D. Hallman,7 S. Hans,16 J. Hartnell,6 P. Harvey,3 M. Hedayatipour,5 W. J. Heintzelman,8 R. L. Helmer,15 B. Hreljac,7 J. Hu,5 T. Iida,3 C. M. Jackson,11,12 N. A. Jelley,9 C. Jillings,7,14 C. Jones,9 P. G. Jones,2,9 K. Kamdin,11,12 T. Kaptanoglu,8 J. Kaspar,17 P. Keener,8 P. Khaghani,7 L. Kippenbrock,17 J. R. Klein,8 R. Knapik,8,18 J. N. Kofron,17 L. L. Kormos,19 S. Korte,7 C. Kraus,7 C. B. Krauss,5 K. Labe,10 I. Lam,3 C. Lan,3 B. J. Land,11,12 S. Langrock,2 A. LaTorre,10 I. Lawson,7,14 G. M. Lefeuvre,6 E. J. Leming,6 J. Lidgard,9 X. Liu,3 Y. Liu,3 V. Lozza,20 S. Maguire,16 A. Maio,1,21 K. Majumdar,9 S. Manecki,3 J. Maneira,1,21 E. Marzec,8 A. Mastbaum,8 N. McCauley,22 A. B. McDonald,3 J. E. McMillan,23 P. Mekarski,5 C. Miller,3 Y. Mohan,8 E. Mony,3 M. J. Mottram,2,6 V. Novikov,3 H. M. O’Keeffe,3,19 E. O’Sullivan,3 G. D. Orebi Gann,8,11,12 M. J. Parnell,19 S. J. M. Peeters,6 T. Pershing,4 Z. Petriw,5 G. Prior,1 J. C. Prouty,11,12 S. Quirk,3 A. Reichold,9 A. Robertson,22 J. Rose,22 R. Rosero,16 P. M. Rost,7 J. Rumleskie,7 M. A. Schumaker,7 M. H. Schwendener,7 D. Scislowski,17 J. Secrest,24 M. Seddighin,3 L. Segui,9 S. Seibert,8 T. Shantz,7 T. M. Shokair,8 L. Sibley,5 J. R. Sinclair,6 K. Singh,5 P. Skensved,3 A. Sörensen,20 T. Sonley,3 R. Stainforth,22 M. Strait,10 M. I. Stringer,6 R. Svoboda,4 J. Tatar,17 L. Tian,3 N. Tolich,17 J. Tseng,9 H. W. C. Tseung,17 R. Van Berg,8 E. Vázquez-Jáuregui,14,25 C. Virtue,7 B. von Krosigk,20 J. M. G. Walker,22 M. Walker,3 O. Wasalski,15 J. Waterfield,6 R. F. White,6 J. R. Wilson,2 T. J. Winchester,17 A. Wright,3 M. Yeh,16 T. Zhao,3 and K. Zuber20

1Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Avenida Elias Garcia 14, 1°, 1000-149 Lisboa, Portugal
2School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK
3Department of Physics, Engineering Physics & Astronomy, Queen’s University, Kingston, ON, Canada K7L 3N6
4University of California, 1 Shields Avenue, Davis, CA 95616, USA
5Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, AB, Canada T6G 2E1
6Physics & Astronomy, University of Sussex, Pevensey II, Falmer, Brighton BN1 9QH, UK
7Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, Canada P3E 2C6
8Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104-6396, USA
9University of Oxford, The Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
10The Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, IL 60637, USA
11Department of Physics, University of California, Berkeley, CA 94720, USA
12Lawrence Berkeley National Laboratory, Nuclear Science Division, 1 Cyclotron Road, Berkeley, CA 94720-8153, USA
13Laboratório de Instrumentação e Física Experimental de Partículas and Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra, Portugal
14SNOLAB, Creighton Mine No. 9, 1039 Regional Road 24, Sudbury, ON, Canada P3Y 1N2
15TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3
16Brookhaven National Laboratory, Chemistry Department, Building 555, P.O. Box 5000, Upton, NY 11973-500, USA
17Center for Experimental Nuclear Physics and Astrophysics and Department of Physics, University of Washington, Seattle, WA 98195, USA
18Norwich University, 158 Harmon Drive, Northfield, VT 05663, USA
19Physics Department, Lancaster University, Lancaster LA1 4YB, UK
20Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
21Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C8, 1749-016 Lisboa, Portugal
22Department of Physics, University of Liverpool, Liverpool L69 3BX, UK
23Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
24Department of Chemistry & Physics, Armstrong Atlantic State University, 11935 Abercorn Street, Savannah, GA 31419, USA
25Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 20-364, 01000 México, DF, Mexico

Received 22 July 2015; Accepted 22 November 2015

Academic Editor: Vincenzo Flaminio

Copyright © 2016 S. Andringa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3.

Linked References

  1. K. Zuber, “Double-beta decay,” Contemporary Physics, vol. 45, no. 6, pp. 491–502, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Serenelli, W. C. Haxton, and C. Peña-Garay, “Solar models with accretion. I. Application to the solar abundance problem,” The Astrophysical Journal, vol. 743, no. 1, article 24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Friedland, C. Lunardini, and C. Peña-Garay, “Solar neutrinos as probes of neutrino-matter interactions,” Physics Letters B, vol. 594, no. 3-4, pp. 347–354, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. W. C. Haxton and A. M. Serenelli, “CN-cycle solar neutrinos and the Sun's primordial core metallicity,” The Astrophysical Journal, vol. 687, no. 1, pp. 678–691, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. C. Chen, “The SNO liquid scintillator project,” Nuclear Physics B—Proceedings Supplements, vol. 145, no. 1–3, pp. 65–68, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Aharmim, S. N. Ahmed, T. C. Andersen et al., “Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury Neutrino Observatory,” Physical Review D, vol. 80, no. 1, Article ID 012001, 2009. View at Publisher · View at Google Scholar
  7. J. Boger, R. L. Hahn, J. K. Rowley et al., “The Sudbury Neutrino Observatory,” Nuclear Instruments and Methods in Physics Research A, vol. 449, no. 1-2, pp. 172–207, 2000. View at Google Scholar
  8. N. Jelley, A. B. McDonald, and R. G. H. Robertson, “The Sudbury Neutrino Observatory,” Annual Review of Nuclear and Particle Science, vol. 59, pp. 431–465, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. P. G. Jones, Background rejection for the neutrinoless double-beta decay experiment SNO+ [Ph.D. thesis], Lincoln College, Oxford, UK, 2011, http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559770.
  10. M. Yeh, S. Hans, W. Beriguete et al., “A new water-based liquid scintillator and potential applications,” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 660, no. 1, pp. 51–56, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. H. M. O'Keeffe, E. O'Sullivan, and M. C. Chen, “Scintillation decay time and pulse shape discrimination in oxygenated and deoxygenated solutions of linear alkylbenzene for the SNO+ experiment,” Nuclear Instruments and Methods in Physics Research A, vol. 640, no. 1, pp. 119–122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Grullon, “Light yield and scintillation decay time constants of Te-loaded liquid scintillator for the SNO+ experiment,” in Proceedings of the 26th International Conference on Neutrino Physics and Astrophysics (Neutrino '14), Boston University, Boston, Mass, USA, June 2014.
  13. H. Wan Chan Tseung, J. Kaspar, and N. Tolich, “Measurement of the dependence of the light yields of linear alkylbenzene-based and EJ-301 scintillators on electron energy,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 654, no. 1, pp. 318–323, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Wan Chan Tseung and N. Tolich, “Ellipsometric measurements of the refractive indices of linear alkylbenzene and EJ-301 scintillators from 210 to 1000 nm,” Physica Scripta, vol. 84, no. 3, Article ID 035701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. B. von Krosigk, L. Neumann, R. Nolte, S. Röttger, and K. Zuber, “Measurement of the proton light response of various LAB based scintillators and its implication for supernova neutrino detection via neutrino-proton scattering,” The European Physical Journal C, vol. 73, article 2390, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. B. von Krosigk, Measurement of proton and α-particle quenching in LAB based scintillators and determination of spectral sensitivities to supernova neutrinos in the SNO+ detector [Ph.D. thesis], Technische Universität Dresden, Dresden, Germany, 2015.
  17. J. B. Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, New York, NY, USA, 1964.
  18. R. Ford, M. Chen, O. Chkvorets, D. Hallman, and E. Vázquez-Jáuregui, “SNO+ scintillator purification and assay,” AIP Conference Proceedings, vol. 1338, pp. 183–194, 2011. View at Google Scholar
  19. R. J. Ford, “A scintillator purification plant and fluid handling system for SNO+,” AIP Conference Proceedings, vol. 1672, Article ID 080003, 2015. View at Publisher · View at Google Scholar
  20. C. Arpesella, H. O. Back, M. Balata et al., “Direct measurement of the 7Be solar neutrino flux with 192 days of borexino data,” Physical Review Letters, vol. 101, no. 9, Article ID 091302, 2008. View at Publisher · View at Google Scholar
  21. K. Eguchi, S. Enomoto, K. Furuno et al., “First results from KamLAND: evidence for reactor antineutrino disappearance,” Physical Review Letters, vol. 90, no. 2, Article ID 021802, 2003. View at Publisher · View at Google Scholar
  22. S. Hans, R. Rosero, L. Hu et al., “Purification of telluric acid for SNO+ neutrinoless double-beta decay search,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 795, pp. 132–139, 2015. View at Publisher · View at Google Scholar
  23. R. Alves, S. Andringa, S. Bradbury et al., “The calibration system for the photomultiplier array of the SNO+ experiment,” Journal of Instrumentation, vol. 10, no. 3, Article ID P03002, 2015. View at Publisher · View at Google Scholar
  24. National Nuclear Data Center, “Nuclear structure & decay data,” http://www.nndc.bnl.gov/nudat2/.
  25. G. Alimonti, C. Arpesella, M. B. Avanzini et al., “The liquid handling systems for the Borexino solar neutrino detector,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 609, no. 1, pp. 58–78, 2009. View at Publisher · View at Google Scholar
  26. F. Alessandria, E. Andreotti, R. Ardito et al., “CUORE crystal validation runs: results on radioactive contamination and extrapolation to CUORE background,” Astroparticle Physics, vol. 35, no. 12, pp. 839–849, 2012. View at Publisher · View at Google Scholar
  27. T. W. Armstrong, K. C. Chandler, and J. Barish, “Calculations of neutron flux spectra induced in the Earth's atmosphere by galactic cosmic rays,” Journal of Geophysical Research, vol. 78, no. 16, pp. 2715–2726, 1973. View at Publisher · View at Google Scholar
  28. N. Gehrels, “Instrumental background in balloon-borne gamma-ray spectrometers and techniques for its reduction,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 239, no. 2, pp. 324–349, 1985. View at Publisher · View at Google Scholar
  29. G. Alimonti, G. Angloher, C. Arpesella et al., “Measurement of the 14C abundance in a low-background liquid scintillator,” Physics Letters B, vol. 422, no. 1–4, pp. 349–358, 1998. View at Publisher · View at Google Scholar
  30. S. Abe, S. Enomoto, K. Furuno et al., “Production of radioactive isotopes through cosmic muon spallation in KamLAND,” Physical Review C, vol. 81, no. 2, Article ID 025807, 2010. View at Publisher · View at Google Scholar
  31. G. Bellini, J. Benziger, D. Bick et al., “Precision measurement of the 7Be solar neutrino interaction rate in Borexino,” Physical Review Letters, vol. 107, no. 14, Article ID 141302, 2011. View at Publisher · View at Google Scholar
  32. C. Galbiati, A. Pocar, D. Franco, A. Ianni, L. Cadonati, and S. Schönert, “Cosmogenic 11C production and sensitivity of organic scintillator detectors to pep and CNO neutrinos,” Physical Review C, vol. 71, no. 5, Article ID 055805, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Bellini, J. Benziger, D. Bick et al., “First evidence of pep solar neutrinos by direct detection in Borexino,” Physical Review Letters, vol. 108, no. 5, Article ID 051302, 6 pages, 2012. View at Publisher · View at Google Scholar
  34. V. Lozza and J. Petzoldt, “Cosmogenic activation of a natural tellurium target,” Astroparticle Physics, vol. 61, pp. 62–71, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Arushanova, “Pileup background rejection in SNO+ experiment,” in Proceedings of the Joint Particle, Astroparticle, and Nuclear Physics Groups Annual Meeting (IoP '15), Manchester, UK, April 2015.
  36. E. Arushanova and A. R. Back, “Probing neutrinoless double beta decay with SNO+,” http://arxiv.org/abs/1505.00247.
  37. I. Lawson and B. Cleveland, “Low background counting at SNOLAB,” in Proceedings of the Topical Workshop on Low Radioactivity Techniques (LRT '10), vol. 1338 of AIP Conference Proceedings, pp. 68–77, Sudbury, Canada, August 2010. View at Publisher · View at Google Scholar
  38. B. Aharmim, S. N. Ahmed, A. E. Anthony et al., “Electron energy spectra, fluxes, and day-night asymmetries of 8B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory,” Physical Review C, vol. 72, no. 5, Article ID 055502, 47 pages, 2005. View at Publisher · View at Google Scholar
  39. N. J. T. Smith, “Facility and science developments at SNOLAB,” in Proceedings of the ASPERA Workshop: The Next Generation Projects in Deep Underground Laboratories, Zaragoza, Spain, June 2011, http://indico.cern.ch/event/130734/contribution/21/material/slides/0.pdf.
  40. M. Redshaw, B. J. Mount, E. G. Myers, and F. T. Avignone III, “Masses of 130Te and 130Xe and double-β-decay Q value of 130Te,” Physical Review Letters, vol. 102, no. 21, Article ID 212502, 4 pages, 2009. View at Publisher · View at Google Scholar
  41. R. Arnold, C. Augier, J. Baker et al., “Measurement of the ββ decay half-life of 130Te with the NEMO-3 Detector,” Physical Review Letters, vol. 107, no. 6, Article ID 062504, 2011. View at Publisher · View at Google Scholar
  42. B. Aharmim, S. N. Ahmed, A. E. Anthony et al., “Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory,” Physical Review C, vol. 88, no. 2, Article ID 025501, 2013. View at Publisher · View at Google Scholar
  43. J. Barea, J. Kotila, and F. Iachello, “Nuclear matrix elements for double-β decay,” Physical Review C, vol. 87, no. 1, Article ID 014315, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Kotila and F. Iachello, “Phase-space factors for double-β decay,” Physical Review C—Nuclear Physics, vol. 85, no. 3, Article ID 034316, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Šimkovic, V. Rodin, A. Faessler, and P. Vogel, “0νββ and 2νββ nuclear matrix elements, quasiparticle random-phase approximation, and isospin symmetry restoration,” Physical Review C, vol. 87, no. 4, Article ID 045501, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Menéndez, A. Poves, E. Caurier, and F. Nowacki, “Disassembling the nuclear matrix elements of the neutrinoless ββ decay,” Nuclear Physics A, vol. 818, no. 3-4, pp. 139–151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Hyvärinen and J. Suhonen, “Nuclear matrix elements for 0νββ decays with light or heavy Majorana-neutrino exchange,” Physical Review C, vol. 91, no. 2, Article ID 024613, 2015. View at Publisher · View at Google Scholar · View at Scopus
  48. T. R. Rodríguez and G. Martínez-Pinedo, “Energy density functional study of nuclear matrix elements for neutrinoless ββ decay,” Physical Review Letters, vol. 105, no. 25, Article ID 252503, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, “The chemical composition of the sun,” Annual Review of Astronomy and Astrophysics, vol. 47, pp. 481–522, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Abe, K. Furuno, A. Gando et al., “Measurement of the 8B solar neutrino flux with the KamLAND liquid scintillator detector,” Physical Review C, vol. 84, no. 3, Article ID 035804, 6 pages, 2011. View at Publisher · View at Google Scholar
  51. G. Bellini, J. Benziger, S. Bonetti et al., “Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector,” Physical Review D, vol. 82, no. 3, Article ID 033006, 2010. View at Publisher · View at Google Scholar
  52. M. Smy, “Results from Super-Kamiokande,” in Proceedings of the 25th International Conference on Neutrino Physics and Astrophysics (Neutrino '12), Kyoto, Japan, June 2012.
  53. A. Renshaw, “Solar neutrino results from Super-Kamiokande,” Physics Procedia, vol. 61, pp. 345–354, 2015. View at Publisher · View at Google Scholar
  54. R. Bonventre, A. LaTorre, J. R. Klein, G. D. Orebi Gann, S. Seibert, and O. Wasalski, “Nonstandard models, solar neutrinos, and large θ13,” Physical Review D, vol. 88, no. 5, Article ID 053010, 2013. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Bellini, J. Benziger, D. Bick et al., “Neutrinos from the primary proton-proton fusion process in the Sun,” Nature, vol. 512, no. 7515, pp. 383–386, 2014. View at Publisher · View at Google Scholar
  56. A. Gando, Y. Gando, K. Ichimura et al., “Constraints on θ13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND,” Physical Review D, vol. 83, no. 5, Article ID 052002, 2011. View at Publisher · View at Google Scholar
  57. F. P. An, A. B. Balantekin, H. R. Band et al., “Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay,” Physical Review Letters, vol. 112, no. 6, Article ID 061801, 2014. View at Publisher · View at Google Scholar
  58. H. K. C. Perry, J.-C. Mareschal, and C. Jaupart, “Enhanced crustal geo-neutrino production near the Sudbury Neutrino Observatory, Ontario, Canada,” Earth and Planetary Science Letters, vol. 288, no. 1-2, pp. 301–308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Enomoto, “Using Neutrinos to study the earth: geo-neutrinos,” in Proceedings of the 13th International Workshop on Neutrino Telescopes (NeuTel '09), Venice, Italy, March 2009.
  60. A. M. Dziewonski and D. L. Anderson, “Preliminary reference Earth model,” Physics of the Earth and Planetary Interiors, vol. 25, no. 4, pp. 297–356, 1981. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Gando, Y. Gando, K. Ichimura et al., “Partial radiogenic heat model for Earth revealed by geoneutrino measurements,” Nature Geoscience, vol. 4, pp. 647–651, 2011. View at Publisher · View at Google Scholar
  62. G. Bellini, J. Benziger, D. Bick et al., “Measurement of geo-neutrinos from 1353 days of Borexino,” Physics Letters B, vol. 722, no. 4-5, pp. 295–300, 2013. View at Publisher · View at Google Scholar
  63. I. V. Krivosheina, “SN 1987A—historical view about registration of the neutrino signal with BAKSAN, Kamiokande II and IMB detectors,” International Journal of Modern Physics D, vol. 13, no. 10, Article ID 2085, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. M. T. Keil, G. G. Raffelt, and H.-T. Janka, “Monte Carlo study of supernova neutrino spectra formation,” The Astrophysical Journal, vol. 590, no. 2, pp. 971–991, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Xu, M.-Y. Huang, L.-J. Hu, X.-H. Guo, and B.-L. Young, “Detection of supernova neutrinos on the earth for large θ13,” Communications in Theoretical Physics, vol. 61, no. 2, pp. 226–234, 2014. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Sarikas, G. G. Raffelt, L. Hüdepohl, and H.-T. Janka, “Suppression of self-induced flavor conversion in the Supernova accretion phase,” Physical Review Letters, vol. 108, no. 6, Article ID 061101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. G. Pagliaroli, F. Vissani, M. L. Costantini, and A. Ianni, “Improved analysis of SN1987A antineutrino events,” Astroparticle Physics, vol. 31, no. 3, pp. 163–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. B. Dasgupta and J. F. Beacom, “Reconstruction of supernova νμ, ντ, anti-νμ, and anti-ντ neutrino spectra at scintillator detectors,” Physical Review D, vol. 86, no. 11, Article ID 113006, 2011. View at Google Scholar
  69. T. Lund and J. P. Kneller, “Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution,” Physical Review D, vol. 88, no. 2, Article ID 023008, 2013. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Scholberg, “Supernova neutrino detection,” Annual Review of Nuclear and Particle Science, vol. 62, pp. 81–103, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. J. F. Beacom, W. M. Farr, and P. Vogel, “Detection of supernova neutrinos by neutrino-proton elastic scattering,” Physical Review D, vol. 66, no. 3, Article ID 033001, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. L. A. Ahrens, S. H. Aronson, P. L. Connolly et al., “Measurement of neutrino-proton and antineutrino-proton elastic scattering,” Physical Review D, vol. 35, no. 3, pp. 785–809, 1987. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Schmitt, “TUnfold: an algorithm for correcting migration effects in high energy physics,” Journal of Instrumentation, vol. 7, no. 10, Article ID T10003, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Väänänen and C. Volpe, “The neutrino signal at HALO: learning about the primary supernova neutrino fluxes and neutrino properties,” Journal of Cosmology and Astroparticle Physics, vol. 2011, article 019, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Antonioli, R. T. Fienberg, F. Fleurot et al., “SNEWS: the SuperNova Early Warning System,” New Journal of Physics, vol. 6, article 114, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. S. N. Ahmed, A. E. Anthony, E. W. Beier et al., “Constraints on nucleon decay via invisible modes from the Sudbury Neutrino Observatory,” Physical Review Letters, vol. 92, no. 10, Article ID 102004, 4 pages, 2004. View at Publisher · View at Google Scholar
  77. H. O. Back, M. Balata, A. de Bari et al., “New limits on nucleon decays into invisible channels with the BOREXINO counting test facility,” Physics Letters B, vol. 563, no. 1-2, pp. 23–34, 2003. View at Publisher · View at Google Scholar
  78. T. Araki, S. Enomoto, K. Furuno et al., “Search for the invisible decay of neutrons with KamLAND,” Physical Review Letters, vol. 96, no. 10, Article ID 101802, 5 pages, 2006. View at Publisher · View at Google Scholar
  79. H. Ejiri, “Nuclear deexcitations of nucleon holes associated with nucleon decays in nuclei,” Physical Review C, vol. 48, no. 3, pp. 1442–1444, 1993. View at Publisher · View at Google Scholar · View at Scopus
  80. O. Helene, “Upper limit of peak area,” Nuclear Instruments and Methods In Physics Research, vol. 212, no. 1–3, pp. 319–322, 1983. View at Publisher · View at Google Scholar · View at Scopus
  81. P. W. Graham, I. G. Irastorza, S. K. Lamoreaux, A. Lindner, and K. A. van Bibber, “Experimental searches for the axion and axion-like particles,” Annual Review of Nuclear and Particle Science, vol. 65, no. 1, pp. 485–514, 2015. View at Publisher · View at Google Scholar
  82. G. Bellini, J. Benziger, D. Bick et al., “Search for solar axions produced in the p(d, 3He)A reaction with Borexino detector,” Physical Review D, vol. 85, no. 9, Article ID 092003, 2012. View at Publisher · View at Google Scholar
  83. A. V. Derbin, L. Gironi, S. S. Nagorny et al., “Search for axioelectric effect of solar axions using BGO scintillating bolometer,” The European Physical Journal C, vol. 74, no. 9, article 3035, 2014. View at Publisher · View at Google Scholar · View at Scopus