Table of Contents
Asian Journal of Neuroscience
Volume 2014, Article ID 181325, 9 pages
http://dx.doi.org/10.1155/2014/181325
Review Article

Clinicotherapeutic Potential of Leptin in Alzheimer’s Disease and Parkinson’s Disease

1Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
2Department of Biochemistry, Institute of Post-Graduate Medical Education & Research, 244B Acharya J. C. Bose Road, Kolkata 700020, India
3Department of Neuroscience, Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA

Received 29 May 2014; Accepted 21 July 2014; Published 13 August 2014

Academic Editor: Cristoforo Comi

Copyright © 2014 Soumyabrata Munshi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Taylor, J. Hardy, and K. H. Fischbeck, “Toxic proteins in neurodegenerative disease,” Science, vol. 296, no. 5575, pp. 1991–1995, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Soto and L. D. Estrada, “Protein misfolding and neurodegeneration,” Archives of Neurology, vol. 65, no. 2, pp. 184–189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Brundin, R. Melki, and R. Kopito, “Prion-like transmission of protein aggregates in neurodegenerative diseases,” Nature Reviews Molecular Cell Biology, vol. 11, no. 4, pp. 301–307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Takalo, A. Salminen, H. Soininen, M. Hiltunen, and A. Haapasalo, “Protein aggregation and degradation mechanisms in neurodegenerative diseases,” American Journal of Neurodegenerative Disease, vol. 2, pp. 1–14, 2013. View at Google Scholar
  5. J. L. Guo and V. M. Lee, “Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases,” Nature Medicine, vol. 20, pp. 130–138, 2014. View at Publisher · View at Google Scholar
  6. S. T. O'Keeffe, H. Kazeem, R. M. Philpott, J. R. Playfer, M. Gosney, and M. Lye, “Gait disturbance in Alzheimer's disease: a clinical study,” Age and Ageing, vol. 25, no. 4, pp. 313–316, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Aarsland, K. Andersen, J. P. Larsen et al., “The rate of cognitive decline in Parkinson disease,” Archives of Neurology, vol. 61, no. 12, pp. 1906–1911, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Della Sala, H. Spinnler, and A. Venneri, “Walking difficulties in patients with Alzheimer's disease might originate from gait apraxia,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 2, pp. 196–201, 2004. View at Google Scholar · View at Scopus
  9. M. Samuel, I. Maidment, M. Boustani, and C. Fox, “Clinical management of Parkinson's disease dementia: pitfalls and progress,” Advances in Psychiatric Treatment, vol. 12, no. 2, pp. 121–129, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. C. H. Williams-Gray, T. Foltynie, S. J. G. Lewis, and R. A. Barker, “Cognitive deficits and psychosis in Parkinson's disease: a review of pathophysiology and therapeutic options,” CNS Drugs, vol. 20, no. 6, pp. 477–505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Jankovic, “Parkinson's disease: Clinical features and diagnosis,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 4, pp. 368–376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. O. Wirths and T. A. Bayer, “Motor impairment in Alzheimer's disease and transgenic Alzheimer's disease mouse models,” Genes, Brain and Behavior, vol. 7, supplement 1, pp. 1–5, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Chen, S. M. Zhang, M. A. Schwarzschild, M. A. Hernán, W. C. Willett, and A. Ascherio, “Obesity and the risk of Parkinson's disease,” The American Journal of Epidemiology, vol. 159, no. 6, pp. 547–555, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Kivipelto, T. Ngandu, L. Fratiglioni et al., “Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease,” Archives of Neurology, vol. 62, no. 10, pp. 1556–1560, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Sriram, S. A. Benkovic, D. B. Miller, and J. P. O'Callaghan, “Obesity exacerbates chemically induced neurodegeneration,” Neuroscience, vol. 115, no. 4, pp. 1335–1346, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. I. A. Arnoldussen, A. J. Kiliaan, and D. R. Gustafson, “Obesity and dementia: adipokines interact with the brain,” European Neuropsychopharmacology, 2014. View at Publisher · View at Google Scholar
  17. J. Harvey, “Leptin regulation of neuronal morphology and hippocampal synaptic function,” Frontiers in Synaptic Neuroscience, vol. 5, article 3, 2013. View at Publisher · View at Google Scholar
  18. J. Harvey, “Leptin regulation of neuronal excitability and cognitive function,” Current Opinion in Pharmacology, vol. 7, no. 6, pp. 643–647, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. L. J. Shanley, D. O'Malley, A. J. Irving, M. L. Ashford, and J. Harvey, “Leptin inhibits epileptiform-like activity in rat hippocampal neurones via PI 3-kinase-driven activation of BK channels,” Journal of Physiology, vol. 545, no. 3, pp. 933–944, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Y. Lu, C. S. Kim, A. Frazer, and W. Zhang, “Leptin: a potential novel antidepressant,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, pp. 1593–1598, 2006. View at Google Scholar
  21. D. Beccano-Kelly and J. Harvey, “Leptin: A novel therapeutic target in Alzheimer's disease?” International Journal of Alzheimer's Disease, vol. 2012, Article ID 594137, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. G. H. Doherty, “Obesity and the ageing brain: could leptin play a role in neurodegeneration?” Current Gerontology and Geriatrics Research, vol. 2011, Article ID 708154, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Marwarha and O. Ghribi, “Leptin signaling and Alzheimer's disease,” American Journal of Neurodegenerative Disease, vol. 1, pp. 245–265, 2012. View at Google Scholar
  24. B. Burguera, M. E. Couce, J. Long et al., “The long form of the leptin receptor (OB-Rh) is widely expressed in the human brain,” Neuroendocrinology, vol. 71, no. 3, pp. 187–195, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. P. J. Scarpace, M. Matheny, R. L. Moore, and N. Tümer, “Impaired leptin responsiveness in aged rats,” Diabetes, vol. 49, no. 3, pp. 431–435, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Fernández-Galaz, T. Fernández-Agulló, F. Campoy et al., “Decreased leptin uptake in hypothalamic nuclei with ageing in Wistar rats,” Journal of Endocrinology, vol. 171, no. 1, pp. 23–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Wang, Y. Zhou, T. Kakuma et al., “Leptin resistance of adipocytes in obesity: role of suppressors of cytokine signaling,” Biochemical and Biophysical Research Communications, vol. 277, no. 1, pp. 20–26, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Peralta, J. M. Carrascosa, N. Gallardo, M. Ros, and C. Arribas, “Ageing increases SOCS-3 expression in rat hypothalamus: effects of food restriction,” Biochemical and Biophysical Research Communications, vol. 296, no. 2, pp. 425–428, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. C. D. Morrison, C. L. White, Z. Wang et al., “Increased hypothalamic protein tyrosine phosphatase 1B contributes to leptin resistance with age,” Endocrinology, vol. 148, no. 1, pp. 433–440, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Lei, S. Ayton, D. I. Finkelstein, P. A. Adlard, C. L. Masters, and A. I. Bush, “Tau protein: relevance to Parkinson's disease,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 11, pp. 1775–1778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. D. J. Irwin, V. M. Lee, and J. Q. Trojanowski, “Parkinson's disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies,” Nature Reviews Neuroscience, vol. 14, no. 9, pp. 626–636, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Marwarha, B. Dasari, J. P. R. Prabhakara, J. Schommer, and O. Ghribi, “β-Amyloid regulates leptin expression and tau phosphorylation through the mTORC1 signaling pathway,” Journal of Neurochemistry, vol. 115, no. 2, pp. 373–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. D. J. Bonda, J. G. Stone, S. L. Torres et al., “Dysregulation of leptin signaling in Alzheimer disease: evidence for neuronal leptin resistance,” Journal of Neurochemistry, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Wilcke and E. Walum, “Characterization of leptin intracellular trafficking,” European Journal of Histochemistry, vol. 44, no. 4, pp. 325–334, 2000. View at Google Scholar · View at Scopus
  35. R. J. Castellani, A. Nunomura, H. Lee, G. Perry, and M. A. Smith, “Phosphorylated tau: toxic, protective, or none of the above,” Journal of Alzheimer's Disease, vol. 14, no. 4, pp. 377–383, 2008. View at Google Scholar · View at Scopus
  36. S. P. Kalra, “Central leptin insufficiency syndrome: An interactive etiology for obesity, metabolic and neural diseases and for designing new therapeutic interventions,” Peptides, vol. 29, no. 1, pp. 127–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. A. Farr, W. A. Banks, and J. E. Morley, “Effects of leptin on memory processing,” Peptides, vol. 27, no. 6, pp. 1420–1425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Paz-Filho, M.-L. Wong, and J. Licinio, “The procognitive effects of leptin in the brain and their clinical implications,” International Journal of Clinical Practice, vol. 64, no. 13, pp. 1808–1812, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. Weng, A. P. Signore, Y. Gao et al., “Leptin protects against 6-hydroxydopamine-induced dopaminergic cell death via mitogen-activated protein kinase signaling,” Journal of Biological Chemistry, vol. 282, no. 47, pp. 34479–34491, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Martins, S. Gomes, R. O. Costa et al., “Leptin and ghrelin prevent hippocampal dysfunction induced by Aβ oligomers,” Neuroscience, vol. 241, pp. 41–51, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. S. J. Greco, S. Sarkar, J. M. Johnston et al., “Leptin reduces Alzheimer's disease-related tau phosphorylation in neuronal cells,” Biochemical and Biophysical Research Communications, vol. 376, no. 3, pp. 536–541, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. G. H. Doherty, C. Oldreive, and J. Harvey, “Neuroprotective actions of leptin on central and peripheral neurons in vitro,” Neuroscience, vol. 154, no. 4, pp. 1297–1307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. J. Greco, K. J. Bryan, S. Sarkar et al., “Leptin reduces pathology and improves memory in a transgenic mouse model of Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 19, no. 4, pp. 1155–1167, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Tezapsidis, J. M. Johnston, M. A. Smith et al., “Leptin: A novel therapeutic strategy for Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 16, no. 4, pp. 731–740, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Cunha, R. Brambilla, and K. L. Thomas, “A simple role for BDNF in learning and memory?” Frontiers in Molecular Neuroscience, vol. 3, article 1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Jana, M. Sinha, D. Chanda et al., “Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: Implications in dopamine cytotoxicity and pathogenesis of Parkinson's disease,” Biochimica et Biophysica Acta, vol. 1812, no. 6, pp. 663–673, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. D. C. Fewlass, K. Noboa, F. X. Pi-Sunyer, J. M. Johnston, S. D. Yan, and N. Tezapsidis, “Obesity-related leptin regulates Alzheimer's Aβ,” The FASEB Journal, vol. 18, no. 15, pp. 1870–1878, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Marwarha, S. Raza, C. Meiers, and O. Ghribi, “Leptin attenuates BACE1 expression and amyloid-β genesis via the activation of SIRT1 signaling pathway,” Biochimica et Biophysica Acta, vol. 1842, no. 9, pp. 1587–1595, 2014. View at Publisher · View at Google Scholar
  49. J. Harvey, L. J. Shanley, D. O'Malley, and A. J. Irving, “Leptin: a potential cognitive enhancer?” Biochemical Society Transactions, vol. 33, no. 5, pp. 1029–1032, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. G. H. Doherty, D. Beccano-Kelly, S. D. Yan, F. J. Gunn-Moore, and J. Harvey, “Leptin prevents hippocampal synaptic disruption and neuronal cell death induced by amyloid β,” Neurobiology of Aging, vol. 34, no. 1, pp. 226–237, 2013. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Wilms, L. Zecca, P. Rosenstiel, J. Sievers, G. Deuschl, and R. Lucius, “Inflammation in Parkinson's diseases and other neurodegenerative diseases: cause and therapeutic implications,” Current Pharmaceutical Design, vol. 13, no. 18, pp. 1925–1928, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Cappellano, M. Carecchio, T. Fleetwood, L. Magistrelli, R. Cantello, and U. Dianzani, “Immunity and inflammation in neurodegenerative diseases,” The American Journal of Neurodegener Diseases, vol. 2, pp. 89–107, 2013. View at Google Scholar
  53. P. L. McGeer, S. Itagaki, B. E. Boyes, and E. G. McGeer, “Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains,” Neurology, vol. 38, no. 8, pp. 1285–1291, 1988. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Bertrand, W. Lechowcz, G. M. Szpak, and J. Dymecki, “Qualitative and quantitative analysis of locus coeruleus neurons in Parkinson's disease,” Folia Neuropathologica, vol. 35, no. 2, pp. 80–86, 1997. View at Google Scholar · View at Scopus
  55. E. C. Hirsch and S. Hunot, “Neuroinflammation in Parkinson's disease: a target for neuroprotection?” The Lancet Neurology, vol. 8, no. 4, pp. 382–397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Brochard, B. Combadière, A. Prigent et al., “Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease,” The Journal of Clinical Investigation, vol. 119, no. 1, pp. 182–192, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Amantea, C. Tassorelli, R. Russo et al., “Neuroprotection by leptin in a rat model of permanent cerebral ischemia: effects on STAT3 phosphorylation in discrete cells of the brain,” Cell Death and Disease, vol. 2, no. 12, article e238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Li, F. Li, and A. Zhao, “Inflammation and leptin,” Drug Discovery Today: Disease Mechanisms, vol. 3, no. 3, pp. 387–393, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Pinteaux, W. Inoue, L. Schmidt, F. Molina-Holgado, N. J. Rothwell, and G. N. Luheshi, “Leptin induces interleukin-1β release from rat microglial cells through a caspase 1 independent mechanism,” Journal of Neurochemistry, vol. 102, no. 3, pp. 826–833, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Li, R. Zhao, K. Gao et al., “Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer's disease,” Current Alzheimer Research, vol. 8, no. 1, pp. 67–80, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Hsuchou, W. Pan, M. J. Barnes, and A. J. Kastin, “Leptin receptor mRNA in rat brain astrocytes,” Peptides, vol. 30, no. 12, pp. 2275–2280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Chinaglia, F. J. Alvarez, A. Probst, and J. M. Palacios, “Mesostriatal and mesolimbic dopamine uptake binding sites are reduced in Parkinson's disease and progressive supranuclear palsy: a quantitative autoradiographic study using [3H]mazindol,” Neuroscience, vol. 49, no. 2, pp. 317–327, 1992. View at Publisher · View at Google Scholar · View at Scopus
  63. D. M. Opland, G. M. Leinninger, and M. G. Myers Jr., “Modulation of the mesolimbic dopamine system by leptin,” Brain Research, vol. 1350, pp. 65–70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Pfaffly, M. Michaelides, G. Wang, J. E. Pessin, N. D. Volkow, and P. K. Thanos, “Leptin increases striatal dopamine D2 receptor binding in leptin-deficient obese (ob/ob) mice,” Synapse, vol. 64, no. 7, pp. 503–510, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. R. D. Palmiter, “Is dopamine a physiologically relevant mediator of feeding behavior?” Trends in Neurosciences, vol. 30, no. 8, pp. 375–381, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. M. M. Hagan, P. J. Havel, R. J. Seeley et al., “Cerebrospinal fluid and plasma leptin measurements: covariability with dopamine and cortisol in fasting humans,” The Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 10, pp. 3579–3585, 1999. View at Google Scholar · View at Scopus
  67. D. P. Figlewicz, S. B. Evans, J. Murphy, M. Hoen, and D. G. Baskin, “Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat,” Brain Research, vol. 964, no. 1, pp. 107–115, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. J. D. Hommel, R. Trinko, R. M. Sears et al., “Leptin receptor signaling in midbrain dopamine neurons regulates feeding,” Neuron, vol. 51, no. 6, pp. 801–810, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Sjöbeck, M. Haglund, and E. Englund, “Decreasing myelin density reflected increasing white matter pathology in Alzheimer's disease—a neuropathological study,” International Journal of Geriatric Psychiatry, vol. 20, no. 10, pp. 919–926, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. B. T. Hyman, C. H. Phelps, T. G. Beach et al., “National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease,” Alzheimer's and Dementia, vol. 8, no. 1, pp. 1–13, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. G. Bartzokis, “Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer's disease,” Neurobiology of Aging, vol. 25, no. 1, pp. 5–18, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Benitez, E. Fieremans, J. H. Jensen et al., “White matter tract integrity metrics reflect the vulnerability of late- myelinating tracts in Alzheimer's disease,” NeuroImage: Clinical, vol. 4, pp. 64–71, 2013. View at Google Scholar
  73. G. Bartzokis, P. H. Lu, and J. Mintz, “Human brain myelination and amyloid beta deposition in Alzheimer's disease,” Alzheimer's and Dementia, vol. 3, no. 2, pp. 122–125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. M. K. Desai, K. L. Sudol, M. C. Janelsins, M. A. Mastrangelo, M. E. Frazer, and W. J. Bowers, “Triple-transgenic Alzheimer's disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology,” GLIA, vol. 57, no. 1, pp. 54–65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. F. Xie, H. Fu, J. C. Zhang, X. F. Chen, X. L. Wang, and J. Chen, “Gene profiling in the dynamic regulation of the lifespan of the myelin sheath structure in the optic nerve of rats,” Molecular Medicine Reports, vol. 10, pp. 217–222, 2014. View at Google Scholar
  76. F. Xie, P. Liang, H. Fu, J. C. Zhang, and J. Chen, “Effects of normal aging on myelin sheath ultrastructures in the somatic sensorimotor system of rats,” Molecular Medicine Reports, vol. 10, no. 1, pp. 459–466, 2014. View at Google Scholar
  77. G. Bartzokis, “Alzheimer's disease as homeostatic responses to age-related myelin breakdown,” Neurobiology of Aging, vol. 32, no. 8, pp. 1341–1371, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. M. K. Desai, M. A. Mastrangelo, D. A. Ryan, K. L. Sudol, W. C. Narrow, and W. J. Bowers, “Early oligodendrocyte/myelin pathology in Alzheimer's disease mice constitutes a novel therapeutic target,” The American Journal of Pathology, vol. 177, no. 3, pp. 1422–1435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Sena, L. L. Sarlieve, and G. Rebel, “Brain myelin of genetically obese mice,” Journal of the Neurological Sciences, vol. 68, no. 2-3, pp. 233–244, 1985. View at Publisher · View at Google Scholar · View at Scopus
  80. R. S. Ahima, C. Bjorbæk, S. Osei, and J. S. Flier, “Regulation of neuronal and glial proteins by leptin: implications for brain development,” Endocrinology, vol. 140, no. 6, pp. 2755–2762, 1999. View at Publisher · View at Google Scholar · View at Scopus
  81. R. Hashimoto, A. Matsumoto, J. Udagawa, K. Hioki, and H. Otani, “Effect of leptin administration on myelination in ob/ob mouse cerebrum after birth,” NeuroReport, vol. 24, no. 1, pp. 22–29, 2013. View at Publisher · View at Google Scholar · View at Scopus
  82. W. Lieb, A. S. Beiser, R. S. Vasan et al., “Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging,” The Journal of the American Medical Association, vol. 302, no. 23, pp. 2565–2572, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. K. F. Holden, K. Lindquist, F. A. Tylavsky, C. Rosano, T. B. Harris, and K. Yaffe, “Serum leptin level and cognition in the elderly: findings from the Health ABC Study,” Neurobiology of Aging, vol. 30, no. 9, pp. 1483–1489, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. V. K. Khemka, D. Bagchi, K. Bandyopadhyay et al., “Altered serum levels of adipokines and insulin in probable Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 41, no. 2, pp. 525–533, 2014. View at Google Scholar
  85. D. A. Power, J. Noel, R. Collins, and D. O'Neill, “Circulating leptin levels and weight loss in Alzheimer's disease patients,” Dementia and Geriatric Cognitive Disorders, vol. 12, no. 2, pp. 167–170, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. A. A. Rizoulis, S. E. Karaoulanis, K. A. Rizouli, and A. Papadimitriou, “Serum leptin levels in patients with Alzheimers disease,” Internation Journal of Caring Sciences, vol. 5, pp. 43–49, 2012. View at Google Scholar
  87. B. Bigalke, B. Schreitmüller, K. Sopova et al., “Adipocytokines and CD34+ progenitor cells in Alzheimer's disease,” PLoS ONE, vol. 6, no. 5, Article ID e20286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Theodoropoulou, I. C. Metallinos, A. Psyrogiannis, G. A. Vagenakis, and V. Kyriazopoulou, “Ghrelin and leptin secretion in patients with moderate Alzheimer's disease,” Journal of Nutrition, Health and Aging, pp. 1–6, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. M. W. Warren, L. S. Hynan, M. F. Weiner et al., “Lipids and adipokines as risk factors for Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 29, no. 1, pp. 151–157, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. K. János, P. Magdolna, J. Anna et al., “Achetylcholinesterase (AchE) inhibition and serum lipokines in Alzheimer's disease: friend or foe?” Neuropsychopharmacologia Hungarica, vol. 14, no. 1, pp. 19–27, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Pakaski, A. Feher, and A. Juhasz, “Serum adipokine levels modified by donepezil treatment in Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 38, pp. 371–377, 2014. View at Google Scholar
  92. Y. Furiya, M. Ryo, M. Kawahara, T. Kiriyama, M. Morikawa, and S. Ueno, “Renin-angiotensin system blockers affect cognitive decline and serum adipocytokines in Alzheimer's disease,” Alzheimer's & Dementia, vol. 9, pp. 512–518, 2013. View at Google Scholar
  93. U. Fiszer, M. Michałowska, B. Baranowska et al., “Leptin and ghrelin concentrations and weight loss in Parkinson's disease,” Acta Neurologica Scandinavica, vol. 121, no. 4, pp. 230–236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. B. Lorefält, G. Toss, and A. Granérus, “Weight loss, body fat mass, and Leptin in Parkinson's disease,” Movement Disorders, vol. 24, no. 6, pp. 885–890, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. V. G. H. Evidente, J. N. Caviness, C. H. Adler, K. A. Gwinn-Hardy, and R. E. Pratley, “Serum leptin concentrations and satiety in Parkinson's disease patients with and without weight loss,” Movement Disorders, vol. 16, no. 5, pp. 924–927, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. B. Ozdilek and G. Kenangil, “Serum leptin concentrations in Turkish Parkinson's disease population,” Parkinson's Disease, vol. 2014, Article ID 576020, 5 pages, 2014. View at Publisher · View at Google Scholar
  97. N. P. Rocha, P. L. Scalzo, I. G. Barbosa et al., “Circulating levels of adipokines in Parkinson's disease,” Journal of the Neurological Sciences, vol. 339, pp. 64–68, 2014. View at Publisher · View at Google Scholar
  98. J. A. Matochik, E. D. London, B. O. Yildiz et al., “Effect of leptin replacement on brain structure in genetically leptin-deficient adults,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 5, pp. 2851–2854, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. G. J. Paz-Filho, T. Babikian, R. Asarnow et al., “Leptin replacement improves cognitive development,” PLoS ONE, vol. 3, no. 8, Article ID e3098, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. G. Sinha, “Leptin therapy gains FDA approval,” Nature Biotechnology, vol. 32, pp. 300–302, 2014. View at Google Scholar
  101. J. H. Toyn and M. K. Ahlijanian, “Interpreting Alzheimer’s disease clinical trials in light of the effects on amyloid-β,” Alzheimer's Research & Therapy, vol. 6, article 14, 2014. View at Publisher · View at Google Scholar
  102. B. Thanvi, N. Lo, and T. Robinson, “Levodopa-induced dyskinesia in Parkinson's disease: clinical features, pathogenesis, prevention and treatment,” Postgraduate Medical Journal, vol. 83, no. 980, pp. 384–388, 2007. View at Publisher · View at Google Scholar · View at Scopus