Table of Contents
Algebra
Volume 2014 (2014), Article ID 970157, 7 pages
http://dx.doi.org/10.1155/2014/970157
Research Article

On Determinantal Varieties of Hankel Matrices

1University of Trento, 38123 Povo, Trento, Italy
2Polytechnic of Turin, 10129 Torino, Italy

Received 23 January 2014; Accepted 9 April 2014; Published 28 April 2014

Academic Editor: Sorin Dascalescu

Copyright © 2014 Edoardo Ballico and Michele Elia. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Hesse, “Ueber determinanten und ihre anwendung in der geometrie, insbesondere auf Curven vieter ordung,” Journal für die Reine und Angewandte Mathematik, vol. 49, pp. 243–264, 1855. View at Google Scholar
  2. A. Beauville, “Determinantal hypersurfaces,” The Michigan Mathematical Journal, vol. 48, pp. 39–64, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. R. Zaare-Nahandi and H. Usefi, “A note on minors of a generalized Hankel matrix,” International Mathematical Journal, vol. 3, no. 11, pp. 1197–1201, 2003. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. A. Weil, Courbes Algébriques et Variétés Abéliennes, Hermann, Paris, France, 1971.
  5. K. Cattell and J. C. Muzio, “Analysis of one-dimensional linear hybrid cellular automata over 𝔽q,” IEEE Transactions on Computers, vol. 45, no. 7, pp. 782–792, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. K. Cattell and J. C. Muzio, “Synthesis of one-dimensional linear hybrid cellular automata,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 3, pp. 325–335, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. M. T. Comer and E. L. Kaltofen, “On the Berlekamp/Massey algorithm and counting singular Hankel matrices over a finite field,” Journal of Symbolic Computation, vol. 47, no. 4, pp. 480–491, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. K. Imamura and W. Yoshida, “A simple derivation of the Berlekamp-Massey algorithm and some applications,” IEEE Transactions on Information Theory, vol. 33, no. 1, pp. 146–150, 1987. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. R. A. Horn and C. R. Johnson, Matrix Analysis, Dover, New York, NY, USA, 1980.