Advances in Multimedia
 Journal metrics
Acceptance rate-
Submission to final decision-
Acceptance to publication-
CiteScore0.770
Impact Factor-
 Submit

High Dynamic Range Imaging Based on Bidirectional Structural Similarities and Weighted Low-Rank Matrix Completion

Read the full article

 Journal profile

Advances in Multimedia publishes research on the technologies associated with multimedia systems, including computer-media integration for digital information processing, storage, transmission, and representation.

 Editor spotlight

Advances in Multimedia maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

A Color-Image Encryption Scheme Using a 2D Chaotic System and DNA Coding

This paper proposes a method of encrypting images with password protection for secure sharing based on deoxyribonucleic acid (DNA) sequence operations and the tangent-delay ellipse reflecting the cavity-map system (TD-ERCS). The initial values of the TD-ERCS system are generated from a user’s password, and the TD-ERCS system is used to scramble the pixel locations of the R, G, and B matrices of the original image. Next, three DNA-sequence matrices are generated by encoding the permuted color image such that it can be transformed into three matrices. Then, the TD-ERCS system is employed to generate three chaotic sequences before encoding the DNA into the three matrices. Thereafter, a DNA exclusive OR (XOR) operation is executed between the DNA sequences of the permuted image and the DNA sequences generated by the TD-ERCS system to produce three encrypted scrambled matrices. Finally, the matrices of the DNA sequences are decoded, and the R, G, and B channels are recombined to form an encrypted color image. The results of simulation and security tests reveal that the proposed algorithm offers robust encryption and demonstrates the ability to resist exhaustive, statistical, and differential attacks.

Research Article

Euclidean Distance-Based Weighted Prediction for Merge Mode in HEVC

Merge mode can achieve a considerable coding gain because of reducing the cost of coding motion information in video codecs. However, the simple adoption of the motion information from the neighbouring blocks may not achieve the optimal performance as the motion correlation between the pixels and the neighbouring block decreases with their distance increasing. To address this problem, the paper proposes a Euclidean distance-based weighted prediction algorithm as an additional candidate in the merge mode. First, several predicted blocks are generated by motion compensation prediction (MCP) with the motion information from available neighbouring blocks. Second, an additional predicted block is generated by a weighted average of the predicted blocks above, where the weighted coefficient is related to Euclidean distances from the neighbouring candidate to the pixel points in the current block. Finally, the best merge mode is selected by the rate distortion optimization (RDO) among the original merge candidates and the additional candidate. Experimental results show that, on the joint exploration test model 7.0 (JEM 7.0), the proposed algorithm achieves better coding performance than the original merge mode under all configurations including random access (RA), low delay B (LDB), and low delay P (LDP), with a slight coding complexity increase. Especially for the LDP configuration, the proposed method achieves 1.50% bitrate saving on average.

Research Article

A Human-Computer Interaction System for Agricultural Tools Museum Based on Virtual Reality Technology

Traditional museums and most digital museums use window display to exhibit their collections. However, the agricultural tools are distinctive for their use value and wisdom contained. Therefore, this paper first proposes a method of virtual interactive display for agricultural tools based on virtual reality technology, which combines static display and dynamic use of agricultural tools vividly showing the agricultural tools. To address the problems of rigid interaction and terrible experience in the process of human-computer interaction, four human-computer interaction technologies are proposed to design and construct a more humanized system including intelligent scenes switching technology, multichannel introduction technology, interactive virtual roaming technology, and task-based interactive technology. The evaluation results demonstrate that the system proposed achieves good performance in fluency, instructiveness, amusement, and practicability. This human-computer interaction system can not only show the wisdom of Chinese traditional agricultural tools to the experiencer all over the world but also put forward a new method of digital museum design.

Research Article

Image Hashing for Tamper Detection with Multiview Embedding and Perceptual Saliency

Perceptual hashing technique for tamper detection has been intensively investigated owing to the speed and memory efficiency. Recent researches have shown that leveraging supervised information could lead to learn a high-quality hashing code. However, most existing methods generate hashing code by treating each region equally while ignoring the different perceptual saliency relating to the semantic information. We argue that the integrity for salient objects is more critical and important to be verified, since the semantic content is highly connected to them. In this paper, we propose a Multi-View Semi-supervised Hashing algorithm with Perceptual Saliency (MV-SHPS), which explores supervised information and multiple features into hashing learning simultaneously. Our method calculates the image hashing distance by taking into account the perceptual saliency rather than directly considering the distance value between total images. Extensive experiments on benchmark datasets have validated the effectiveness of our proposed method.

Research Article

Video Scene Detection Using Compact Bag of Visual Word Models

Video segmentation into shots is the first step for video indexing and searching. Videos shots are mostly very small in duration and do not give meaningful insight of the visual contents. However, grouping of shots based on similar visual contents gives a better understanding of the video scene; grouping of similar shots is known as scene boundary detection or video segmentation into scenes. In this paper, we propose a model for video segmentation into visual scenes using bag of visual word (BoVW) model. Initially, the video is divided into the shots which are later represented by a set of key frames. Key frames are further represented by BoVW feature vectors which are quite short and compact compared to classical BoVW model implementations. Two variations of BoVW model are used: classical BoVW model and Vector of Linearly Aggregated Descriptors (VLAD) which is an extension of classical BoVW model. The similarity of the shots is computed by the distances between their key frames feature vectors within the sliding window of length , rather comparing each shot with very long lists of shots which has been previously practiced, and the value of is . Experiments on cinematic and drama videos show the effectiveness of our proposed framework. The BoVW is -dimensional vector and VLAD is only -dimensional vector in the proposed model. The BoVW achieves segmentation accuracy, whereas VLAD achieves .

Research Article

Height Estimation of Target Objects Based on Structured Light

The height estimation of the target object is an important research direction in the field of computer vision. The three-dimensional reconstruction of structured light has the characteristics of high precision, noncontact, and simple structure and is widely used in military simulation and cultural heritage protection. In this paper, the height of the target object is estimated by using the word structure light. According to the height dictionary, the height under the offset is estimated by the movement of the structured light to the object. In addition, by effectively preprocessing the captured structured light images, such as expansion, seeking skeleton, and other operations, the flexibility of estimating the height of different objects by structured light is increased, and the height of the target object can be estimated more accurately.

Advances in Multimedia
 Journal metrics
Acceptance rate-
Submission to final decision-
Acceptance to publication-
CiteScore0.770
Impact Factor-
 Submit