Table of Contents Author Guidelines Submit a Manuscript
Advances in Medicine
Volume 2014, Article ID 307168, 7 pages
http://dx.doi.org/10.1155/2014/307168
Research Article

Hemodynamic Surveillance of Ventricular Pacing Effectiveness with the Transvalvular Impedance Sensor

1Arrhythmology OU, Ferrarotto Hospital, University of Catania, Catania, Italy
2Arrhythmology OU, Cardiology Department, Fogliani Hospital, Milazzo, Messina, Italy
3Arrhythmology OU, Cardiology Department, Cannizzaro Hospital, Catania, Italy
4Cardiology Department, Garibaldi-Centro Hospital, Catania, Italy
5Clinical Research Unit, Medico Spa, Rubano, Padova, Italy

Received 15 May 2014; Accepted 24 June 2014; Published 4 August 2014

Academic Editor: Claudia Kusmic

Copyright © 2014 Valeria Calvi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Gelvan, E. Crystal, B. Dokumaci, Y. Goldshmid, and I. E. Ovsyshcher, “Effect of modern pacing algorithms on generator longevity: a predictive analysis,” Pacing and Clinical Electrophysiology, vol. 26, no. 9, pp. 1796–1802, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Biffi, J. Sperzel, C. Martignani, A. Branzi, and G. Boriani, “Evolution of pacing for bradycardia: autocapture,” European Heart Journal, Supplement, vol. 9, pp. I23–I32, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Clarke, B. Liu, H. Schüller et al., “Automatic adjustment of pacemaker stimulation output correlated with continuously monitored capture thresholds: a multicenter study,” Pacing and Clinical Electrophysiology, vol. 21, no. 8, pp. 1567–1575, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Lau, D. A. Cameron, S. C. Nishimura et al., “A cardiac evoked response algorithm providing threshold tracking: a North American multicenter study,” Pacing and Clinical Electrophysiology, vol. 23, no. 6, pp. 953–959, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Schuchert, R. Ventura, and T. Meinertz, “Automatic threshold tracking activation without the intraoperative evaluation of the evoked response amplitude,” Pacing and Clinical Electrophysiology, vol. 23, no. 3, pp. 321–324, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Provenier, E. Germonpré, and X. De Wagter, “Improved differentiation of the ventricular evoked response from polarization by modification of the pacemaker impulse,” Pacing and Clinical Electrophysiology, vol. 23, no. 12, pp. 2073–2077, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Schuchert, R. Ventura, and T. Meinertz, “Adjustment of the evoked response sensitivity after hospital discharge in pacemaker patients with automatic ventricular threshold tracking activated,” Pacing and Clinical Electrophysiology, vol. 24, no. 2, pp. 212–216, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Sperzel, J. Neuzner, T. Schwarz, Q. Zhu, A. König, and G. Neal Kay, “Reduction of pacing output coupling capacitance for sensing the evoked response,” Pacing and Clinical Electrophysiology, vol. 24, no. 9, pp. 1377–1382, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Lau, S. C. Nishimura, R. Yee, C. Lefeuvrea, F. Philippon, and D. A. Cameron, “Intraoperative study of polarization and evoked response signals in different endocardial electrode designs,” Pacing and Clinical Electrophysiology, vol. 24, no. 7, pp. 1055–1060, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Binner, J. Messenger, J. Sperzel et al., “Autocapture enhancements: unipolar and bipolar lead compatibility and bipolar pacing capability on bipolar leads,” Pacing and Clinical Electrophysiology, vol. 26, part 2, pp. 221–224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. A. L. P. Ribeiro, L. G. Rincón, B. G. Oliveira et al., “Automatic adjustment of pacing output in the clinical setting,” American Heart Journal, vol. 147, no. 1, pp. 127–131, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Sperzel, C. Kennergren, M. Biffi et al., “Clinical performance of a ventricular automatic capture verification algorithm,” Pacing and Clinical Electrophysiology, vol. 28, no. 9, pp. 933–937, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Candinas, B. Liu, J. Leal et al., “Impact of fusion avoidance on performance of the automatic threshold tracking feature in dual chamber pacemakers: a multicenter prospective randomized study,” Pacing and Clinical Electrophysiology, vol. 25, no. 11, pp. 1540–1545, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. M. G. Bongiorni, E. Soldati, G. Arena et al., “Haemodynamic assessment by transvalvular impedance recording,” in Emerging Pathologies in Cardiology, M. Gulizia, Ed., pp. 323–330, Springer, Milan, Italy, 2005. View at Google Scholar
  15. F. Di Gregorio, A. Morra, M. Finesso, and M. G. Bongiorni, “Transvalvular impedance (TVI) recording under electrical and pharmocological cardiac stimulation,” Pacing and Clinical Electrophysiology, vol. 19, no. 11, part 2, pp. 1689–1693, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Gasparini, A. Curnis, M. Gulizia et al., “Rate-responsive pacing regulated by cardiac haemodynamics,” Europace, vol. 7, no. 3, pp. 234–241, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Taborsky, J. Kupec, R. Vopalka, A. Barbetta, and F. Di Gregorio, “Left ventricular mechanical activity detected by impedance recording,” Europace, vol. 12, no. 4, pp. 534–539, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Taborsky, M. Fedorco, T. Skala et al., “Acute effects of right ventricular pacing on cardiac haemodynamics and transvalvular impedance,” Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czech Republic, 2013. View at Publisher · View at Google Scholar
  19. M. O. Sweeney, A. S. Hellkamp, K. A. Ellenbogen et al., “Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction,” Circulation, vol. 107, no. 23, pp. 2932–2937, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. Nielsen, L. Kristensen, H. R. Andersen, P. T. Mortensen, O. L. Pedersen, and A. K. Pedersen, “A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with sick sinus syndrome: echocardiographic and clinical outcome,” Journal of the American College of Cardiology, vol. 42, no. 4, pp. 614–623, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. S. Steinberg, A. Fischer, P. Wang et al., “The clinical implications of cumulative right ventricular pacing in the multicenter automatic defibrillator trial II,” Journal of Cardiovascular Electrophysiology, vol. 16, no. 4, pp. 359–365, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Zhang, H. Chen, C. Siu et al., “New-onset heart failure after permanent right ventricular apical pacing in patients with acquired high-grade atrioventricular block and normal left ventricular function,” Journal of Cardiovascular Electrophysiology, vol. 19, no. 2, pp. 136–141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Houthuizen, F. Bracke, and B. M. van Gelder, “Atrioventricular and interventricular delay optimization in cardiac resynchronization therapy: physiological principles and overview of available methods,” Heart Failure Reviews, vol. 16, no. 3, pp. 263–276, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Luria, O. Gurevitz, D. B. Lev, Y. Tkach, M. Eldar, and M. Glikson, “Use of automatic threshold tracking function with non-low polarization leads: Risk for algorithm malfunction,” Pacing and Clinical Electrophysiology, vol. 27, no. 4, pp. 453–459, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Sperzel, L. Binner, G. Boriani et al., “Evaluation of the atrial evoked response for capture detection with high-polarization leads,” Pacing and Clinical Electrophysiology, vol. 28, no. 1, pp. S57–S62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. U. Lotze, S. Fischer, T. Höfs et al., “Electrical performance and automatic capture characteristics of a 3.5-mm2 passive fixation lead during 1-year follow-up,” Pacing and Clinical Electrophysiology, vol. 32, no. 8, pp. 1050–1055, 2009. View at Publisher · View at Google Scholar · View at Scopus