Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2012, Article ID 351731, 17 pages
Research Article

Model Simulations of Complex Dust Emissions over the Sahara during the West African Monsoon Onset

Department of Geography, University of Sussex, Chichester I Building, Falmer, Brighton BN1 9QJ, UK

Received 30 November 2011; Revised 20 February 2012; Accepted 6 March 2012

Academic Editor: Pawan Gupta

Copyright © 2012 Carolina Cavazos-Guerra and Martin C. Todd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The existing limitations in ground-based observations in remote areas in West Africa determine the dependence on numerical models to represent the atmospheric mechanisms that contribute to dust outbreaks at different space-time scales. In this work, the ability of the Weather Research and Forecasting model coupled with the Chemistry (WRF-Chem) model using the GOCART dust scheme is evaluated. The period comprises the West African Monsoon onset phase (the 7th to 12th of June, 2006) coinciding with the AMMA Special Observing Period (SOP). Different features in the horizontal and vertical dynamical structure of the Saharan atmosphere are analyzed with a combination of satellite and ground-based observations and model experimentation at 10 and 30 km model resolution. The main features of key Saharan dust processes during summer are identifiable, and WRF-CHEM replicates these adequately. Observations and model analyses have shown that cold pools (haboobs) contributed a substantial proportion of total dust during the study period. The comparative analysis between observations and WRF-Chem simulations demonstrates the model efficiency to simulate the spatial and 3D structure of dust transport over the Sahara and Sahel. There is, therefore, a strong basis for accurate forecasting of dust events associated with synoptic scale events when model dust emission parameterization is suitably calibrated.