Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2012, Article ID 351731, 17 pages
http://dx.doi.org/10.1155/2012/351731
Research Article

Model Simulations of Complex Dust Emissions over the Sahara during the West African Monsoon Onset

Department of Geography, University of Sussex, Chichester I Building, Falmer, Brighton BN1 9QJ, UK

Received 30 November 2011; Revised 20 February 2012; Accepted 6 March 2012

Academic Editor: Pawan Gupta

Copyright © 2012 Carolina Cavazos-Guerra and Martin C. Todd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. C. Hsu, S. C. Tsay, M. D. King, and J. R. Herman, “Aerosol properties over bright-reflecting source regions,” IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 3, pp. 557–569, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. P. R. Buseck and M. Pósfai, “Airborne minerals and related aerosol particles: effects on climate and the environment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3372–3379, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. N. M. Mahowald, A. R. Baker, G. Bergametti et al., “Atmospheric global dust cycle and iron inputs to the ocean,” Global Biogeochemical Cycles, vol. 19, no. 4, Article ID GB4025, 15 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Forster, V. Ramaswamy, P. Artaxo et al., “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, and M. Manning, Eds., chapter 2, pp. 129–234, Cambridge University Press, New York, NY, USA, 2007. View at Google Scholar
  5. N. J. Middleton and A. S. Goudie, “Saharan dust: sources and trajectories,” Transactions of the Institute of British Geographers, vol. 26, no. 2, pp. 165–181, 2001. View at Google Scholar · View at Scopus
  6. R. Washington, M. C. Todd, S. Engelstaedter, S. Mbainayel, and F. Mitchell, “Dust and the low-level circulation over the Bodélé Depression, Chad: observations from BoDEx 2005,” Journal of Geophysical Research D, vol. 111, no. 3, Article ID D03201, 15 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. C. Todd, R. Washington, J. V. Martins et al., “Mineral dust emission from the Bodélé Depression nothern Chad, during BoDEx 2005,” Journal of Geophysical Research D, vol. 112, no. 6, Article ID D06207, 12 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Schepanski, I. Tegen, B. Laurent, B. Heinold, and A. Macke, “A new Saharan dust source activation frequency map derived from MSG-SEVIRI IR-channels,” Geophysical Research Letters, vol. 34, no. 18, Article ID L18803, 5 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Cuesta, J. H. Marsham, D. J. Parker, and C. Flamant, “Dynamical mechanisms controlling the vertical redistribution of dust and the thermodynamic structure of the West Saharan atmospheric boundary layer during summer,” Atmospheric Science Letters, vol. 10, no. 1, pp. 34–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Prospero, “African dust in America,” Geotimes, vol. 46, no. 11, pp. 24–27, 2001. View at Google Scholar
  11. R. Washington, M. Todd, N. J. Middleton, and A. S. Goudie, “Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations,” Annals of the Association of American Geographers, vol. 93, no. 2, pp. 297–313, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Engelstaedter and R. Washington, “Atmospheric controls on the annual cycle of North African dust,” Journal of Geophysical Research D, vol. 112, no. 3, Article ID D03103, 14 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Hayward and J. S. Oguntoyinbo, Climatology of West Africa, Barnes and Neble Books, Totowa, NJ, USA, 1987.
  14. A. E. Kalu, “The African dust plume: its characteristics and propagation across West Africa in Winter,” in Saharan Dust, Mobilization, Transport, Deposition, C. Morales, Ed., pp. 95–118, John Wiley & Sons, New York, NY, USA, 1979. View at Google Scholar
  15. D. B. Karam, C. Flamant, J. Cuesta, J. Pelon, and E. Williams, “Dust emission and transport associated with a Saharan depression: February 2007 case,” Journal of Geophysical Research D, vol. 115, no. 13, Article ID D00H27, 19 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Knippertz, C. Deutscher, K. Kandler, T. Müller, O. Schulz, and L. Schütz, “Dust mobilization due to density currents in the Atlas region: observations from the Saharan Mineral Dust Experiment 2006 field campaign,” Journal of Geophysical Research D, vol. 112, no. 21, Article ID D21109, 14 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Washington and M. C. Todd, “Atmospheric controls on mineral dust emission from the Bodélé Depression, Chad: the role of the low level jet,” Geophysical Research Letters, vol. 32, no. 17, Article ID L17701, 5 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. B. J. H. van de Wiel, A. F. Moene, G. J. Steeneveld, P. Baas, F. C. Bosveld, and A. A. M. Holtslag, “A conceptual view on inertial oscillations and nocturnal low-level jets,” Journal of the Atmospheric Sciences, vol. 67, no. 8, pp. 2679–2689, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. C. Todd, R. Washington, S. Raghavan, G. Lizcano, and P. Knippertz, “Regional model simulations of the Bodélé low-level jet of Northern Chad during the Bodélé dust experiment (BoDEx 2005),” Journal of Climate, vol. 21, no. 5, pp. 995–1012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. N. M. J. Hall and P. Peyrille, “Dynamics of the West African monsoon,” Journal de Physique IV, vol. 139, pp. 81–99, 2006. View at Google Scholar
  21. C. D. Thorncroft and M. Blackburn, “Maintenance of the African easterly jet,” Quarterly Journal of the Royal Meteorological Society, vol. 125, no. 555, pp. 763–786, 1999. View at Google Scholar · View at Scopus
  22. C. Lavaysse, C. Flamant, S. Janicot et al., “Seasonal evolution of the West African heat low: a climatological perspective,” Climate Dynamics, vol. 33, no. 2-3, pp. 313–330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. D. J. Parker, R. R. Burton, A. Diongue-Niang et al., “The diurnal cycle of the West African monsoon circulation,” Quarterly Journal of the Royal Meteorological Society, vol. 131, no. 611, pp. 2839–2860, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Lavaysse, C. Flamant, S. Janicot, and P. Knippertz, “Links between African easterly waves, midlatitude circulation and intraseasonal pulsations of the West African heat low,” Quarterly Journal of the Royal Meteorological Society, vol. 136, no. 1, pp. 141–158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. K. H. Cook, “Generation of the African easterly jet and its role in determining West African precipitation,” Journal of Climate, vol. 12, no. 5, pp. 1165–1184, 1999. View at Google Scholar · View at Scopus
  26. R. W. Burpee, “Comparison of the structure of easterly wave disturbances in Western Africa, the Eastern Atlantic, and the Caribbean during gate,” Bulletin of the American Meteorological Society, vol. 59, no. 11, article 1534, 1978. View at Google Scholar
  27. A. H. Fink and A. Reiner, “Spatiotemporal variability of the relation between African Easterly Waves and West African Squall Lines in 1998 and 1999,” Journal of Geophysical Research D, vol. 108, no. 11, Article ID 4332, 17 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Diongue, J. P. Lafore, J. L. Redelsperger, and R. Roca, “Numerical study of a Sahelian synoptic weather system: initiation and mature stages of convection and its interactions with the large-scale dynamics,” Quarterly Journal of the Royal Meteorological Society, vol. 128, no. 584, pp. 1899–1928, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Schepanski and P. Knippertz, “Soudano-Saharan depressions and their importance for precipitation and dust: a new perspective on a classical synoptic concept,” Quarterly Journal of the Royal Meteorological Society, vol. 137, no. 659, pp. 1431–1445, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Flamant, J. P. Chaboureau, D. J. Parker et al., “Airborne observations of the impact of a convective system on the planetary boundary layer thermodynamics and aerosol distribution in the inter-tropical discontinuity region of the West African Monsoon,” Quarterly Journal of the Royal Meteorological Society, vol. 133, no. 626, pp. 1175–1189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Knippertz and M. C. Todd, “The central west Saharan dust hot spot and its relation to African easterly waves and extratropical disturbances,” Journal of Geophysical Research D, vol. 115, no. 12, Article ID D12117, 14 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Flamant, P. Knippertz, D. J. Parker et al., “The impact of a mesoscale convective system cold pool on the northward propagation of the intertropical discontinuity over West Africa,” Quarterly Journal of the Royal Meteorological Society, vol. 135, no. 638, pp. 139–159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Bou Karam, C. Flamant, P. Knippertz et al., “Dust emissions over the Sahel associated with the West African monsoon intertropical discontinuity region: a representative case-study,” Quarterly Journal of the Royal Meteorological Society, vol. 134, no. 632, pp. 621–634, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. K. R. Knupp and W. R. Cotton, “Convective cloud downdraft structure: an interpretive survey,” Reviews of Geophysics, vol. 23, no. 2, pp. 183–215, 1985. View at Google Scholar · View at Scopus
  35. B. Sultan and S. Janicot, “Abrupt shift of the ITCZ over West Africa and intra-seasonal variability,” Geophysical Research Letters, vol. 27, no. 20, pp. 3353–3356, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. L. J. Sutton, “Haboobs,” Quarterly Journal of the Royal Meteorological Society, vol. 57, pp. 143–161, 1931. View at Google Scholar
  37. J. S. Farquharson, “Haboobs and instability in the Sudan,” Quarterly Journal of the Royal Meteorological Society, vol. 63, no. 274, pp. 393–414, 1937. View at Google Scholar
  38. C. Jones, N. Mahowald, and C. Luo, “Observational evidence of African desert dust intensification of easterly waves,” Geophysical Research Letters, vol. 31, no. 17, Article ID L17208, 4 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Williams, N. Nathou, E. Hicks et al., “The electrification of dust-lofting gust fronts (“haboobs”) in the Sahel,” Atmospheric Research, vol. 91, no. 2–4, pp. 292–298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. S. D. Miller, A. P. Kuciauskas, M. Liu et al., “Haboob dust storms of the southern Arabian Peninsula,” Journal of Geophysical Research D, vol. 113, no. 1, Article ID D01202, 26 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Knippertz, “Dust emissions in the West African heat trough—the role of the diurnal cycle and of extratropical disturbances,” Meteorologische Zeitschrift, vol. 17, no. 5, pp. 553–563, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Gamo, “Thickness of the dry convection and large-scale subsidence above deserts,” Boundary-Layer Meteorology, vol. 79, no. 3, pp. 265–278, 1996. View at Google Scholar · View at Scopus
  43. V. M. Karyampudi and T. N. Carlson, “Analysis and numerical simulations of the Saharan air layer and its effect on easterly wave disturbances,” Journal of the Atmospheric Sciences, vol. 45, no. 21, pp. 3102–3136, 1988. View at Google Scholar · View at Scopus
  44. J. Michalakes, D. Duhia, D. Gill, T. Henderson, J. Klemp, and W. Wang, “The weather research and forecast model: software architecture and performance,” in Proceedings of the 11th ECMWF Workshop on the Use of High Performance Computing in Meteorology, W. Zwieflhofer and G. Mozdzynski, Eds., pp. 156–168, World Scientific, 2005.
  45. G. A. Grell, S. E. Peckham, R. Schmitz et al., “Fully coupled “online” chemistry within the WRF model,” Atmospheric Environment, vol. 39, no. 37, pp. 6957–6975, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Ginoux, M. Chin, I. Tegen et al., “Sources and distributions of dust aerosols simulated with the GOCART model,” Journal of Geophysical Research D, vol. 106, no. 17, pp. 20255–20273, 2001. View at Google Scholar · View at Scopus
  47. M. Chin, P. Ginoux, S. Kinne et al., “Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements,” Journal of the Atmospheric Sciences, vol. 59, no. 3, pp. 461–483, 2002. View at Google Scholar · View at Scopus
  48. I. Tegen and I. Fung, “Modeling of mineral dust in the atmosphere: sources, transport, and optical thickness,” Journal of Geophysical Research, vol. 99, no. 11, pp. 22897–22914, 1994. View at Google Scholar · View at Scopus
  49. R. S. Defries and J. R. G. Townshend, “NDVI-derived land cover classifications at a global scale,” International Journal of Remote Sensing, vol. 15, no. 17, pp. 3567–3586, 1994. View at Google Scholar · View at Scopus
  50. C. Zhao, X. Liu, L. R. Leung et al., “The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments,” Atmospheric Chemistry and Physics, vol. 10, no. 18, pp. 8821–8838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Wang, C. N. Long, L. R. Leung et al., “Evaluating regional cloud-permitting simulations of the WRF model for the Tropical Warm Pool International Cloud Experiment (TWP-ICE), Darwin, 2006,” Journal of Geophysical Research D, vol. 114, no. 21, Article ID D21203, 21 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. B. Pohl, J. Crétat, and P. Camberlin, “Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa,” Climate Dynamics, vol. 37, no. 7-8, pp. 1357–1379, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Flaounas, S. Bastin, and S. Janicot, “Regional climate modelling of the 2006 West African monsoon: sensitivity to convection and planetary boundary layer parameterisation using WRF,” Climate Dynamics, vol. 36, no. 5-6, pp. 1083–1105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. G. A. Grell and D. Dévényi, “A generalized approach to parameterizing convection combining ensemble and data assimilation techniques,” Geophysical Research Letters, vol. 29, no. 14, Article ID 1693, 4 pages, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. E. K. Gilliland and C. M. Rowe, “A comparison of cumulus parameterization schemes in the WRF model,” in Proceedings of the 87th AMS Annual Meeting, San Antonio, Tex, USA, January 2007. View at Scopus
  56. T. Lebel, B. Cappelaere, S. Galle et al., “AMMA-CATCH studies in the Sahelian region of West-Africa: an overview,” Journal of Hydrology, vol. 375, no. 1-2, pp. 3–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. J. L. Redelsperger, C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and J. Polcher, “African Monsoon Multidisciplinary Analysis: an international research project and field campaign,” Bulletin of the American Meteorological Society, vol. 87, no. 12, pp. 1739–1746, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Legrand, A. Plana-Fattori, and C. N'Doumé, “Satellite detection of dust using the IR imagery of Meteosat 1. Infrared difference dust index,” Journal of Geophysical Research D, vol. 106, no. 16, pp. 18251–18274, 2001. View at Google Scholar · View at Scopus
  59. M. Vaughan, S. Young, D. Winker et al., “Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products,” in Laser Radar Techniques for Atmospheric Sensing, vol. 5575 of Proceedings of SPIE, pp. 16–30, Maspalomas, Spain, September 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. D. M. Winker, W. H. Hunt, and M. J. McGill, “Initial performance assessment of CALIOP,” Geophysical Research Letters, vol. 34, no. 19, Article ID L19803, 5 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. S.-H. Chen and W.-Y. Sun, “A one-dimensional time dependent cloud model,” Journal of the Meteorological Society of Japan, vol. 80, no. 1, pp. 99–118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. Z. I. Janjić, “Nonsingular implementation of the mellor-yamada level 2.5 scheme in the NCEP meso model,” NCEP Office Note No. 437, 2002. View at Google Scholar
  63. L. Zobler, “A world soil file for global climate modelling,” NASA Technical Memorandum 87802, 1986. View at Google Scholar
  64. C. Flamant, C. Lavaysse, M. C. Todd, J. P. Chaboureau, and J. Pelon, “Multl-platform observations of a springtime case of Bodélé and Sudan dust emission, transport and scavenging over West Africa,” Quarterly Journal of the Royal Meteorological Society, vol. 135, no. 639, pp. 413–430, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. G. N. Kiladis, C. D. Thorncroft, and N. M. J. Hall, “Three-dimensional structure and dynamics of African easterly waves. Part I: observations,” Journal of the Atmospheric Sciences, vol. 63, no. 9, pp. 2212–2230, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, “Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product,” Reviews of Geophysics, vol. 40, no. 1, pp. 1–31, 2002. View at Google Scholar · View at Scopus
  67. P. Knippertz, J. Trentmann, and A. Seifert, “High-resolution simulations of convective cold pools over the northwestern Sahara,” Journal of Geophysical Research D, vol. 114, no. 8, Article ID D08110, 16 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus