Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2013, Article ID 317678, 11 pages
http://dx.doi.org/10.1155/2013/317678
Review Article

Systematic Modeling of Impacts of Land Use and Land Cover Changes on Regional Climate: A Review

1Institute of Geographic and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2Center for Chinese Agricultural Policy, Chinese Academy of Sciences, Beijing 100101, China
3University of Chinese Academy of Sciences, Beijing 100049, China
4State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China

Received 23 May 2013; Accepted 2 July 2013

Academic Editor: Hongbo Su

Copyright © 2013 Xiangzheng Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Foley, R. DeFries, G. P. Asner et al., “Global consequences of land use,” Science, vol. 309, no. 5734, pp. 570–574, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Pachauri and A. Reisinger, IPCC Fourth Assessment Report, Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland, 2007.
  3. D. Ojima, Global Land Project: Science Plan and Implementation Strategy, IGBP Secretariat, 2005.
  4. J. J. Feddema, K. W. Oleson, G. B. Bonan et al., “Atmospheric science: the importance of land-cover change in simulating future climates,” Science, vol. 310, no. 5754, pp. 1674–1678, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Fu, W. Dong, G. Wen, and D. Ye, “Regional response and adaptation to global change,” Acta Meteolorogica Sinica, vol. 61, no. 2, pp. 245–249, 2003. View at Google Scholar
  6. G. B. Bonan, “Forests and climate change: forcings, feedbacks, and the climate benefits of forests,” Science, vol. 320, no. 5882, pp. 1444–1449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. L. M. Kueppers and M. A. Snyder, “Influence of irrigated agriculture on diurnal surface energy and water fluxes, surface climate, and atmospheric circulation in California,” Climate Dynamics, vol. 38, no. 5-6, pp. 1017–1029, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. A. K. Betts, J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. A. Viterbo, “The land surface-atmosphere interaction: a review based on observational and global modeling perspectives,” Journal of Geophysical Research D, vol. 101, no. 3, pp. 7209–7225, 1996. View at Google Scholar · View at Scopus
  9. R. A. Pielke Sr. and D. Niyogi, “The role of landscape processes within the climate system,” Lecture Notes in Earth Sciences, vol. 115, pp. 67–85, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. O. L. Phillips, L. E. Aragão, S. L. Lewis et al., “Drought sensitivity of the Amazon rainforest,” Science, vol. 323, no. 5919, pp. 1344–1347, 2009. View at Google Scholar
  11. Z. M. Subin, W. J. Riley, J. Jin, D. S. Christianson, M. S. Torn, and L. M. Kueppers, “Ecosystem feedbacks to climate change in California: development, testing, and analysis using a coupled regional atmosphere and land surface model (WRF3-CLM3.5),” Earth Interactions, vol. 15, no. 15, pp. 1–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Wang, X. Zhang, and X. Yan, “Modeling the climatic effects of urbanization in the Beijing-Tianjin-Hebei metropolitan area,” in Theoretical and Applied Climatology, Springer, 2012. View at Google Scholar
  13. R. A. Pielke Sr., G. Marland, R. A. Betts et al., “The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases,” Philosophical Transactions of the Royal Society A, vol. 360, no. 1797, pp. 1705–1719, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. R. A. Pielke Sr., J. Adegoke, A. Beltrán-Przekurat et al., “An overview of regional land-use and land-cover impacts on rainfall,” Tellus B, vol. 59, no. 3, pp. 587–601, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. V. K. Arora and A. Montenegro, “Small temperature benefits provided by realistic afforestation efforts,” Nature Geoscience, vol. 4, no. 8, pp. 514–518, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. M. Degu, F. Hossain, D. Niyogi et al., “The influence of large dams on surrounding climate and precipitation patterns,” Geophysical Research Letters, vol. 38, no. 4, Article ID L04405, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Wang, X. Yan, J. Liu, and X. Zhang, “The contribution of urbanization to recent extreme heat events and a potential mitigation strategy in the Beijing-Tianjin-Hebei metropolitan area,” in Theoretical and Applied Climatology, 2013. View at Google Scholar
  18. A. T. Woldemichael, F. Hossain, R. Pielke, and A. Beltrán-Przekurat, “Understanding the impact of dam-triggered land use/land cover change on the modification of extreme precipitation,” Water Resources Research, vol. 48, no. 9, pp. 1–16, 2012. View at Google Scholar
  19. P. Meiyappan and A. K. Jain, “Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years,” Frontiers of Earth Science, vol. 6, no. 2, pp. 122–139, 2012. View at Google Scholar
  20. J. Pongratz, C. H. Reick, T. Raddatz, and M. Claussen, “Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change,” Geophysical Research Letters, vol. 37, no. 8, Article ID L08702, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Friedlingstein and I. C. Prentice, “Carbon-climate feedbacks: a review of model and observation based estimates,” Current Opinion in Environmental Sustainability, vol. 2, no. 4, pp. 251–257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. P. A. Dirmeyer and J. Shukla, “Albedo as a modulator of climate response to tropical deforestation,” Journal of Geophysical Research, vol. 99, no. 10, pp. 20–877, 1994. View at Google Scholar · View at Scopus
  23. M. Georgescu, D. B. Lobell, and C. B. Field, “Direct climate effects of perennial bioenergy crops in the United States,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 11, pp. 4307–4312, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Hansen, L. Nazarenko, R. Ruedy et al., “Climate Change: earth's energy imbalance: confirmation and implications,” Science, vol. 308, no. 5727, pp. 1431–1435, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Bathiany, M. Claussen, V. Brovkin, T. Raddatz, and V. Gayler, “Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model,” Biogeosciences Discussions, vol. 7, no. 1, p. 387, 2010. View at Google Scholar
  26. J. Jin, S. Lu, S. Li, and N. L. Miller, “Impact of land use change on the local climate over the tibetan plateau,” Advances in Meteorology, vol. 2010, Article ID 837480, 6 pages, 2010. View at Publisher · View at Google Scholar
  27. F. H. Lambert, M. J. Webb, and M. M. Joshi, “The relationship between land-ocean surface temperature contrast and radiative forcing,” Journal of Climate, vol. 24, no. 13, pp. 3239–3256, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Brovkin, A. Ganopolski, M. Claussen, C. Kubatzki, and V. Petoukhov, “Modelling climate response to historical land cover change,” Global Ecology and Biogeography, vol. 8, no. 6, pp. 509–517, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Charney, P. H. Stone, and W. J. Quirk, “Drought in the Sahara: a biogeophysical feedback mechanism,” Science, vol. 187, no. 4175, pp. 434–435, 1975. View at Google Scholar · View at Scopus
  30. J. Shukla and Y. Mintz, “Influence of land-surface evapotranspiration on the earth's climate,” Science, vol. 215, no. 4539, pp. 1498–1501, 1982. View at Google Scholar · View at Scopus
  31. E. F. Lambin and H. Geist, Land-Use and Land-Cover Change: Local Processes and Global Impacts, Springer, 2006.
  32. V. Brovkin, L. Boysen, T. Raddatz, V. Gayler, A. Loew, and M. Claussen, “Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5 simulations,” Journal of Advances in Modeling Earth Systems, pp. 48–57, 2013. View at Google Scholar
  33. J. D. Wickham, T. G. Wade, and K. H. Riitters, “Comparison of cropland and forest surface temperatures across the conterminous United States,” Agricultural and Forest Meteorology, vol. 166-167, pp. 137–143, 2012. View at Google Scholar
  34. J. D. Wickham, T. G. Wade, and K. H. Riitters, “Empirical analysis of the influence of forest extent on annual and seasonal surface temperatures for the continental United States,” Global Ecology and Biogeography, vol. 22, no. 5, pp. 620–629, 2013. View at Publisher · View at Google Scholar
  35. J. Shukla, C. Nobre, and P. Sellers, “Amazon deforestation and climate change,” Science, vol. 247, no. 4948, pp. 1322–1325, 1990. View at Google Scholar · View at Scopus
  36. Y. Malhi, J. T. Roberts, R. A. Betts, T. J. Killeen, W. Li, and C. A. Nobre, “Climate change, deforestation, and the fate of the Amazon,” Science, vol. 319, no. 5860, pp. 169–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Salvati and S. Bajocco, “Land sensitivity to desertification across Italy: past, present, and future,” Applied Geography, vol. 31, no. 1, pp. 223–231, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. S. E. Nicholson, C. J. Tucker, and M. B. Ba, “Desertification, drought, and surface vegetation: an example from the west African sahel,” Bulletin of the American Meteorological Society, vol. 79, no. 5, pp. 815–829, 1998. View at Google Scholar · View at Scopus
  39. M. Zhao, A. J. Pitman, and T. Chase, “The impact of land cover change on the atmospheric circulation,” Climate Dynamics, vol. 17, no. 5-6, pp. 467–477, 2001. View at Google Scholar · View at Scopus
  40. M. Claussen, V. Brovkin, and A. Ganopolski, “Biophysical versus biogeochemical feedbacks of large-scale land cover change,” Geophysical Research Letters, vol. 28, no. 6, pp. 1011–1014, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. E. L. Davin and N. de Noblet-Ducoudre, “Climatic impact of global-scale Deforestation: radiative versus nonradiative processes,” Journal of Climate, vol. 23, no. 1, pp. 97–112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. R. S. Defries, L. Bounoua, and G. J. Collatz, “Human modification of the landscape and surface climate in the next fifty years,” Global Change Biology, vol. 8, no. 5, pp. 438–458, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. A. E. Dessler, “A determination of the cloud feedback from climate variations over the past decade,” Science, vol. 330, no. 6010, pp. 1523–1527, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. H. Lynch, F. S. Chapin III, L. D. Hinzman et al., “Surface energy balance on the arctic tundra: measurements and models,” Journal of Climate, vol. 12, no. 8, pp. 2585–2606, 1999. View at Google Scholar · View at Scopus
  45. F.-S. Chapin III, M. Sturm, M. C. Serreze et al., “Role of land-surface changes in arctic summer warming,” Science, vol. 310, no. 5748, pp. 657–660, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. C. J. Houldcroft, W. M. F. Grey, M. Barnsley, C. M. Taylor, S. O. Los, and P. R. J. North, “New vegetation Albedo parameters and global fields of soil background Albedo derived from MODIS for use in a climate model,” Journal of Hydrometeorology, vol. 10, no. 1, pp. 183–198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. G. B. Bonan and D. Pollard, “vegetation on global climate,” Nature, vol. 359, 22 pages, 1992. View at Google Scholar
  48. J. H. Copeland, R. A. Pielke, and T. G. F. Kittel, “Potential climatic impacts of vegetation change: a regional modeling study,” Journal of Geophysical Research D, vol. 101, no. 3, pp. 7409–7418, 1996. View at Google Scholar · View at Scopus
  49. Y. Sud, J. Shukla, and Y. Mintz, “Influence of land surface roughness on atmospheric circulation and precipitation-a sensitivity study with a general circulation model,” Journal of Applied Meteorology, vol. 27, no. 9, pp. 1036–1054, 1988. View at Google Scholar
  50. J. I. House, I. C. Prentice, and C. C. Le Quéré, “Maximum impacts of future reforestation or deforestation on atmospheric CO2,” Global Change Biology, vol. 8, no. 11, pp. 1047–1052, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. R. A. Houghton and J. L. Hackler, “Sources and sinks of carbon from land-use change in China,” Global Biogeochemical Cycles, vol. 17, no. 2, 1034 pages, 2003. View at Google Scholar · View at Scopus
  52. J. Fang, A. Chen, C. Peng, S. Zhao, and L. Ci, “Changes in forest biomass carbon storage in China between 1949 and 1998,” Science, vol. 292, no. 5525, pp. 2320–2322, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. S. W. Pacala, G. C. Hurtt, D. Baker et al., “Consistent land- and atmosphere-based U.S. Carbon sink estimates,” Science, vol. 292, no. 5525, pp. 2316–2320, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. G. C. Hurtt, S. W. Pacala, P. R. Moorcroft et al., “Projecting the future of the U.S. Carbon sink,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 3, pp. 1389–1394, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Heimann and M. Reichstein, “Terrestrial ecosystem carbon dynamics and climate feedbacks,” Nature, vol. 451, no. 7176, pp. 289–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Friedlingstein, P. Cox, R. Betts et al., “Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison,” Journal of Climate, vol. 19, no. 14, pp. 3337–3353, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Smith, D. S. Powlson, M. J. Glendining, and J. U. Smith, “Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments,” Global Change Biology, vol. 3, no. 1, pp. 67–79, 1997. View at Google Scholar · View at Scopus
  58. J. Laothawornkitkul, J. E. Taylor, N. D. Paul, and C. N. Hewitt, “Biogenic volatile organic compounds in the Earth system: tansley review,” New Phytologist, vol. 183, no. 1, pp. 27–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. D. V. Spracklen, B. Bonn, and K. S. Carslaw, “Boreal forests, aerosols and the impacts on clouds and climate,” Philosophical Transactions of the Royal Society A, vol. 366, no. 1885, pp. 4613–4626, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Kattenberg, F. Giorgi, H. Grassl et al., “Climate models-projections of future climate,” in Climate Change 1995: The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, pp. 285–357, 1996.
  61. R. A. Pielke Sr., R. Avissar, M. Raupach, A. J. Dolman, X. Zeng, and A. S. Denning, “Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate,” Global Change Biology, vol. 4, no. 5, pp. 461–475, 1998. View at Publisher · View at Google Scholar · View at Scopus
  62. I.-S. Kang, K. Jin, B. Wang et al., “Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs,” Climate Dynamics, vol. 19, no. 5-6, pp. 383–395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. D. M. Lawrence, P. E. Thornton, K. W. Oleson, and G. B. Bonan, “The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: impacts on land-atmosphere interaction,” Journal of Hydrometeorology, vol. 8, no. 4, pp. 862–880, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. C. B. Field, R. B. Jackson, and H. A. Mooney, “Stomatal responses to increased CO2: implications from the plant to the global scale,” Plant, Cell and Environment, vol. 18, no. 10, pp. 1214–1225, 1995. View at Publisher · View at Google Scholar · View at Scopus
  65. T. N. Chase, R. A. Pielke, T. G. F. Kittel, R. Nemani, and S. W. Running, “Sensitivity of a general circulation model to global changes in leaf area index,” Journal of Geophysical Research D, vol. 101, no. 3, pp. 7393–7408, 1996. View at Google Scholar · View at Scopus
  66. R. A. Betts, “Biogeophysical impacts of land use on present-day climate: near-surface temperature change and radiative forcing,” Atmospheric Science Letters, vol. 2, no. 1–4, pp. 39–51, 2001. View at Google Scholar
  67. H. Salmun and A. Molod, “Progress in modeling the impact of land cover change on the global climate,” Progress in Physical Geography, vol. 30, no. 6, pp. 737–749, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. V. Brovkin, M. Claussen, E. Driesschaert et al., “Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity,” Climate Dynamics, vol. 26, no. 6, pp. 587–600, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Von Storch, E. Zorita, and U. Cubasch, “Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime,” Journal of Climate, vol. 6, no. 6, pp. 1161–1171, 1993. View at Google Scholar · View at Scopus
  70. J. Jin, N. L. Miller, and N. Schlegel, “Sensitivity study of four land surface schemes in the WRF model,” Advances in Meteorology, vol. 2010, Article ID 167436, 11 pages, 2010. View at Publisher · View at Google Scholar
  71. Y. Wang, L. R. Leung, J. L. McGregor et al., “Regional climate modeling: progress, challenges, and prospects,” Journal of the Meteorological Society of Japan, vol. 82, no. 6, pp. 1599–1628, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. M. D. Oyama and C. A. Nobre, “Climatic consequences of a large-scale desertification in northeast Brazil: a GCM simulation study,” Journal of Climate, vol. 17, no. 16, pp. 3203–3213, 2004. View at Google Scholar
  73. M. T. Coe, M. H. Costa, and B. S. Soares-Filho, “The influence of historical and potential future deforestation on the stream flow of the Amazon Rivervland surface processes and atmospheric feedbacks,” Journal of Hydrology, vol. 369, no. 1-2, pp. 165–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. T. J. Stohlgren, T. N. Chase, R. A. Pielke Sr., T. G. F. Kittel, and J. S. Baron, “Evidence that local land use practices influence regional climate, vegetation, and stream flow patterns in adjacent natural areas,” Global Change Biology, vol. 4, no. 5, pp. 495–504, 1998. View at Publisher · View at Google Scholar · View at Scopus
  75. N. S. Diffenbaugh, “Influence of modern land cover on the climate of the United States,” Climate Dynamics, vol. 33, no. 7-8, pp. 945–958, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. K. E. Trenberth, Climate System Modeling, Cambridge University Press, 1992.
  77. K. Mcguffie and A. Henderson-Sellers, A Climate Modelling Primer, Wiley, 2005.
  78. A. Henderson-Sellers, R. E. Dickinson, T. B. Durbidge, P. J. Kennedy, K. McGuffie, and A. J. Pitman, “Tropical deforestation: modeling local- to regional-scale climate change,” Journal of Geophysical Research, vol. 98, no. 4, pp. 7289–7315, 1993. View at Google Scholar · View at Scopus
  79. Y. Malhi, L. E. O. C. Aragão, D. Galbraith et al., “Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 49, pp. 20610–20615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Xue and J. Shukla, “The influence of land surface properties on Sahel climate. Part I: desertification,” Journal of Climate, vol. 6, no. 12, pp. 2232–2245, 1993. View at Google Scholar · View at Scopus
  81. S. Nicholson, “Land surface processes and Sahel climate,” Reviews of Geophysics, vol. 38, no. 1, pp. 117–139, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. P. J. Sellers, D. A. Randall, G. J. Collatz et al., “A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: model formulation,” Journal of Climate, vol. 9, no. 4, pp. 676–705, 1996. View at Google Scholar · View at Scopus
  83. G. B. Bonan, K. W. Oleson, M. Vertenstein et al., “The land surface climatology of the community land model coupled to the NCAR community climate model,” Journal of Climate, vol. 15, no. 22, pp. 3123–3149, 2002. View at Google Scholar · View at Scopus
  84. D. Niyogi, K. Alapaty, S. Raman, and F. Chen, “Development and evaluation of a coupled photosynthesis-based gas exchange evapotranspiration model (GEM) for mesoscale weather forecasting applications,” Journal of Applied Meteorology and Climatology, vol. 48, no. 2, pp. 349–368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Xue, F. J. Zeng, K. E. Mitchell, Z. Janjic, and E. Rogers, “The impact of land surface processes on simulations of the U.S. hydrological cycle: a case study of the 1993 flood usingthe SSiB land surface model in the NCEP Eta regional model,” Monthly Weather Review, vol. 129, no. 12, pp. 2833–2860, 2001. View at Google Scholar · View at Scopus
  86. Z. Yiqun, Q. Yongfu, M. Manqian, Y. Ge, K. Yushou, and Z. Donghua, “The effects of vegetation change on regional climate I: simulation results,” Acta Meteorologica Sinica, vol. 60, no. 1, pp. 1–16, 2002. View at Google Scholar
  87. Y. Dai, X. Zeng, R. E. Dickinson et al., “The common land model,” Bulletin of the American Meteorological Society, vol. 84, no. 8, pp. 1013–1023, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Klein Goldewijk, A. Beusen, G. Van Drecht, and M. De Vos, “The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years,” Global Ecology and Biogeography, vol. 20, no. 1, pp. 73–86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Kabat, Vegetation, Water, Humans and the Climate: A New Perspective on an Interactive System, Springer, 2004.
  90. L. M. Kueppers, M. A. Snyder, and L. C. Sloan, “Irrigation cooling effect: regional climate forcing by land-use change,” Geophysical Research Letters, vol. 34, no. 3, Article ID L03703, 5 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. E. M. Douglas, A. Beltrán-Przekurat, D. Niyogi, R. A. Pielke Sr., and C. J. Vörösmarty, “The impact of agricultural intensification and irrigation on land-atmosphere interactions and Indian monsoon precipitation—a mesoscale modeling perspective,” Global and Planetary Change, vol. 67, no. 1-2, pp. 117–128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. L. M. Kueppers, M. A. Snyder, L. C. Sloan et al., “Seasonal temperature responses to land-use change in the western United States,” Global and Planetary Change, vol. 60, no. 3-4, pp. 250–264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. D. B. Lobell and C. Bonfils, “The effect of irrigation on regional temperatures: a spatial and temporal analysis of trends in California, 1934–2002,” Journal of Climate, vol. 21, no. 10, pp. 2063–2071, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. E. M. Douglas, D. Niyogi, S. Frolking et al., “Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian Monsoon Belt,” Geophysical Research Letters, vol. 33, no. 14, Article ID L14403, 5 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. D. Lobell, G. Bala, A. Mirin, T. Phillips, R. Maxwell, and D. Rotman, “Regional differences in the influence of irrigation on climate,” Journal of Climate, vol. 22, no. 8, pp. 2248–2255, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. J. M. Shepherd, “A review of current investigations of urban-induced rainfall and recommendations for the future,” Earth Interactions, vol. 9, no. 12, pp. 1–27, 2005. View at Google Scholar · View at Scopus
  97. B. Stone Jr., “Land use as climate change mitigation,” Environmental Science and Technology, vol. 43, no. 24, pp. 9052–9056, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. I. D. Stewart and T. R. Oke, “Local climate zones for urban temperature studies,” Bulletin of the American Meteorological Society, vol. 93, no. 12, pp. 1879–1900, 2012. View at Google Scholar
  99. J. Li, C. Song, L. Cao, F. Zhu, X. Meng, and J. Wu, “Impacts of landscape structure on surface urban heat islands: a case study of Shanghai, China,” Remote Sensing of Environment, vol. 115, no. 12, pp. 3249–3263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Kato and Y. Yamaguchi, “Estimation of storage heat flux in an urban area using ASTER data,” Remote Sensing of Environment, vol. 110, no. 1, pp. 1–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. J. K. W. Wong and L. S. -K. Lau, “From the “urban heat island” to the vgreen island”? A preliminary investigation into the potential of retrofitting green roofs in Mongkok district of Hong Kong,” Habitat International, vol. 39, pp. 25–35, 2013. View at Google Scholar
  102. K. W. Oleson, G. B. Bonan, J. Feddema, and M. Vertenstein, “An urban parameterization for a global climate model. Part II: sensitivity to input parameters and the simulated urban heat island in offline simulations,” Journal of Applied Meteorology and Climatology, vol. 47, no. 4, pp. 1061–1076, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Murata, H. Sasaki, M. Hanafusa, and K. Kurihara, “Estimation of urban heat island intensity using biases in surface air temperature simulated by a nonhydrostatic regional climate model,” Theoretical and Applied Climatology, vol. 112, no. 1-2, pp. 351–361, 2013. View at Google Scholar
  104. K. Wang, H. Ye, F. Chen, Y. Xiong, and C. Wang, “Urbanization effect on the diurnal temperature range: different roles under solar dimming and brightening,” Journal of Climate, vol. 25, no. 3, pp. 1022–1027, 2012. View at Publisher · View at Google Scholar · View at Scopus
  105. A. M. Coutts, J. Beringer, and N. J. Tapper, “Impact of increasing urban density on local climate: spatial and temporal variations in the surface energy balance in Melbourne, Australia,” Journal of Applied Meteorology and Climatology, vol. 46, no. 4, pp. 477–493, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. Y. Ezber, O. L. Sen, T. Kindap, and M. Karaca, “Climatic effects of urbanization in Istanbul: a statistical and modeling analysis,” International Journal of Climatology, vol. 27, no. 5, pp. 667–679, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. K. Trusilova, M. Jung, G. Churkina, U. Karsten, M. Heimann, and M. Claussen, “Urbanization impacts on the climate in Europe: numerical experiments by the PSU-NCAR mesoscale model (MM5),” Journal of Applied Meteorology and Climatology, vol. 47, no. 5, pp. 1442–1455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. S. I. Bohnenstengel, S. Evans, P. A. Clark, and S. E. Belcher, “Simulations of the London urban heat island,” Quarterly Journal of the Royal Meteorological Society, vol. 137, no. 659, pp. 1625–1640, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. D.-L. Zhang, Y.-X. Shou, and R. R. Dickerson, “Upstream urbanization exacerbates urban heat island effects,” Geophysical Research Letters, vol. 36, no. 24, Article ID L24401, 5 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. S. Miao, F. Chen, Q. Li, and S. Fan, “Impacts of urban processes and urbanization on summer precipitation: a case study of heavy rainfall in Beijing on 1 August 2006,” Journal of Applied Meteorology and Climatology, vol. 50, no. 4, pp. 806–825, 2011. View at Publisher · View at Google Scholar · View at Scopus