Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2013 (2013), Article ID 361471, 9 pages
Research Article

Effect of the Evaporative Cooling on the Human Thermal Comfort and Heat Stress in a Greenhouse under Arid Conditions

1Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460,Riyadh 11451, Saudi Arabia
2Mechanical Power Engineering Department, Faculty of Energy Engineering, Aswan University, Aswan 81528, Egypt

Received 7 March 2013; Revised 24 August 2013; Accepted 30 August 2013

Academic Editor: Harry D. Kambezidis

Copyright © 2013 A. M. Abdel-Ghany et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Thermal sensation and heat stress were evaluated in a plastic greenhouse, with and without evaporative cooling, under arid climatic conditions in Riyadh, Saudi Arabia. Suitable thermal comfort and heat stress scales were selected for the evaluation. Experiments were conducted in hot sunny days to measure the required parameters (i.e., the dry and wet bulb temperatures, globe temperature, natural wet bulb temperature, and solar radiation flux) in the greenhouse. The results showed that in the uncooled greenhouse, workers are exposed to strong heat stress and would feel very hot most of the day time; they are safe from heat stress risk and would feel comfortable during night. An efficient evaporative cooling is necessary during the day to reduce heat stress and to improve the comfort conditions and is not necessary at night. In the cooled greenhouse, workers can do any activity: except at around noon they should follow a proposed working schedule, in which the different types of work were scheduled along the daytimes based on the heat stress value. To avoid heat stress and to provide comfort conditions in the greenhouses, the optimum ranges of relative humidity and air temperature are 48–55% and 24–28°C, respectively.