Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2013, Article ID 361471, 9 pages
http://dx.doi.org/10.1155/2013/361471
Research Article

Effect of the Evaporative Cooling on the Human Thermal Comfort and Heat Stress in a Greenhouse under Arid Conditions

1Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460,Riyadh 11451, Saudi Arabia
2Mechanical Power Engineering Department, Faculty of Energy Engineering, Aswan University, Aswan 81528, Egypt

Received 7 March 2013; Revised 24 August 2013; Accepted 30 August 2013

Academic Editor: Harry D. Kambezidis

Copyright © 2013 A. M. Abdel-Ghany et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Okushima, S. Sase, L. In-Bok, and B. J. Bailey, “Thermal environment and stress of workers in naturally ventilated greenhouses under mild climate,” in Proceedings of the 5th International Symposium on Protected Cultivation in Mild Winter Climates: Current Trends for Suistainable Technologies, Fernandez, Martinez, and Castilla, Eds., pp. 793–798, 2001.
  2. T. Shimazu, H. Hamamoto, T. Okada, T. Ikeda, and K. Tanaka, “Microclimate and human thermal comfort in pipe greenhouses with insect-proof screens for vegetable cultivation with restricted use of chemical pesticides,” Journal of Agricultural Meteorology of Japan, vol. 60, no. 5, pp. 813–816, 2005. View at Google Scholar
  3. “Thermal environmental conditions for human occupancy,” ANSI/ASHRAE Standard 55, The American Society of Heating, Refrigeration and Air Conditioning Engineers, Atlanta, Ga, USA, 2004.
  4. B. Givoni, M. Noguchi, H. Saaroni et al., “Outdoor comfort research issues,” Energy and Buildings, vol. 35, no. 1, pp. 77–86, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Atthajariyakul and T. Leephakpreeda, “Neural computing thermal comfort index for HVAC systems,” Energy Conversion and Management, vol. 46, no. 15-16, pp. 2553–2565, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Forsthoff and H. Neffgen, “The assessment of heat radiation,” International Journal of Industrial Ergonomics, vol. 23, no. 5-6, pp. 407–414, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. “Introduction to thermal comfort standard,” http://www.utci.org/cost/publications/ISO%20Standards%20Ken%20Parsons.pdf.
  8. L. Bánhidi and Z. B. Biro, “Design and calculation possibilities for the heat exchange conditions of the human body,” Periodica Polytechnica, Mechanical Engineering, vol. 44, no. 2, pp. 185–193, 2000. View at Google Scholar · View at Scopus
  9. L. Serres, A. Trombe, and J. Miriel, “Solar fluxes absorbed by the dweller of glazed premises. Influence upon the thermal comfort equation,” International Journal of Thermal Sciences, vol. 40, no. 5, pp. 478–488, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Prek, “Thermodynamical analysis of human thermal comfort,” Energy, vol. 31, no. 5, pp. 732–743, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Yilmaz, S. Toy, and H. Yilmaz, “Human thermal comfort over three different land surfaces during summer in the city of Erzurum, Turkey,” Atmosfera, vol. 20, no. 3, pp. 289–297, 2007. View at Google Scholar · View at Scopus
  12. H. Mayer, J. Holst, and F. Imbery, “Human thermal comfort within urban structures in a central European city,” in Proceeding of the 7th International Conference on Urban Climate, Yokohama, Japan, June2009.
  13. Y. Epstein and D. S. Moran, “Thermal comfort and the heat stress indices,” Industrial Health, vol. 44, no. 3, pp. 388–398, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Deb and A. Ramachandraiah, “Review of studies on outdoor thermal comfort using physiological equivalent temperature (PET),” International Journal of Engineering Science and Technology, vol. 92, no. 7, pp. 2825–2828, 2011. View at Google Scholar · View at Scopus
  15. S. Thorsson, F. Lindberg, I. Eliasson, and B. Holmer, “Different methods for estimating the mean radiant temperature in an outdoor urban setting,” International Journal of Climatology, vol. 27, no. 14, pp. 1983–1993, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. “Estimating wet bulb globe temperature using standard meteorological Measurements,” WSRC-MS-99-00757, http://sti.srs.gov/fulltext/ms9900757/ms9900757.pdf#search='wsrcms9900757'.
  17. T. Itagi, “Deployment of laborsaving and comfortable technology on cultivation Management,” in Handbook of Greenhouse Horticulture, JAGH, Ed., pp. 218–227, Agripress, Tokyo, Japan, 2003. View at Google Scholar
  18. A. M. Abdel-Ghany, I. M. Al-Helal, and M. R. Shady, “Human thermal comfort and heat stress in an outdoor urban arid environment: a case study,” Advances in Meteorology, vol. 2013, Article ID 693541, 7 pages, 2013. View at Publisher · View at Google Scholar
  19. A. Matzarakis, F. Rutz, and H. Mayer, “Modelling radiation fluxes in simple and complex environments: application of the RayMan model,” International Journal of Biometeorology, vol. 51, no. 4, pp. 323–334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Matzarakis, F. Rutz, and H. Mayer, “Modeling the thermal bioclimate in urban areas with the RayMan model,” in Proceeding of the 23rd Conference on Passive and Low Energy Architecture (PLEA '06), Geneva, Switzerland, September 2006.
  21. http://www.utci.org/utci_doku.php.
  22. http://www.utci.org/utcineu/utcineu.php.
  23. “OSHA Technical Manual (OTM). Section III: chapter IV: heat stress,” https://www.osha.gov/dts/osta/otm/otm_iii/otm_iii_4.html.
  24. A. M. Abdel-Ghany, E. Goto, and T. Kozai, “Evaporation characteristics in a naturally ventilated, fog-cooled greenhouse,” Renewable Energy, vol. 31, no. 14, pp. 2207–2226, 2006. View at Publisher · View at Google Scholar · View at Scopus