Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2013, Article ID 512656, 12 pages
http://dx.doi.org/10.1155/2013/512656
Research Article

The Development of a Hybrid EnKF-3DVAR Algorithm for Storm-Scale Data Assimilation

1Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, OK 73072, USA
2NOAA/National Severe Storm Laboratory, National Weather Center 120 David L. Boren Boulevard, Norman, OK 73072, USA
3School of Meteorology, University of Oklahoma, Norman, OK 73072, USA

Received 17 May 2013; Revised 15 September 2013; Accepted 25 September 2013

Academic Editor: Kun Zhao

Copyright © 2013 Jidong Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Gao, M. Xue, K. Brewster, and K. K. Droegemeier, “A three-dimensional variational data analysis method with recursive filter for Doppler radars,” Journal of Atmospheric and Oceanic Technology, vol. 21, no. 3, pp. 457–469, 2004. View at Google Scholar · View at Scopus
  2. M. Hu, M. Xue, J. Gao, and K. Brewster, “3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part IIimpact of radial velocity analysis via 3DVAR,” Monthly Weather Review, vol. 134, no. 2, pp. 699–721, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Hu and M. Xue, “Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma city tornadic thunderstorm case,” Monthly Weather Review, vol. 135, no. 2, pp. 507–525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Ge and J. Gao, “Latest development of 3DVAR system for ARPS and its application to a tornadic supercell storm,” in Proceedings of the 22nd Conference on Weather Analysis and Forecasting/18th Conference on Numerical Weather Prediction, 2007.
  5. G. Ge, J. Gao, and M. Xue, “Diagnostic pressure equation as a weak constraint in a storm-scale three dimensional variational radar data assimilation system,” Journal of Atmospheric and Oceanic Technology, vol. 29, pp. 1075–1092, 2012. View at Publisher · View at Google Scholar
  6. M. Xue, F. Kong, K. Thomas et al., “CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA hazardous weather testbed spring experiment,” in Proceedings of the 24th Conference on Severe Local Storms, AMS, Savannah, Ga, USA, 2008.
  7. F. Kong, M. Xue, K. W. Thomas et al., “A realtime storm-scale ensemble forecast system: 2009 spring experiment,” in Proceedings of the 23rd Conference on Weather Analysis and Forecasting/19th Conference on Numerical Weather Prediction, American Meteorological Society, Omaha, Neb, USA, 2009.
  8. A. D. Schenkman, M. Xue, A. Shapiro, K. Brewster, and J. Gao, “Impact of CASA radar and Oklahoma Mesonet data assimilation on the analysis and prediction of tornadic mesovortices in an MCS,” Monthly Weather Review, vol. 139, no. 11, pp. 3422–3445, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. D. Schenkman, M. Xue, A. Shapiro, K. Brewster, and J. Gao, “The analysis and prediction of the 8-9 May 2007 Oklahoma tornadic mesoscale convective system by assimilating WSR-88D and CASA radar data using 3DVAR,” Monthly Weather Review, vol. 139, no. 1, pp. 224–246, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. D. M. Barker, W. Huang, Y. R. Guo, A. J. Bourgeois, and Q. Xiao, “A three-dimensional variational data assimilation system for MM5: implementation and initial results,” Monthly Weather Review, vol. 132, pp. 897–914, 2004. View at Google Scholar
  11. Q. Xiao, Y.-H. Kuo, J. Sun et al., “Assimilation of Doppler radar observations with a regional 3DVAR system: impact of Doppler velocities on forecasts of a heavy rainfall case,” Journal of Applied Meteorology, vol. 44, no. 6, pp. 768–788, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. W. C. Skamarock, J. B. Klemp, J. Dudhia et al., “A description of the advanced research WRF,” Version 2, 2005.
  13. F. Rabier, “Overview of data assimilation developments in numerical weather prediction centers,” in Proceedings of the 4th WMO International Symposium: Assimilation of Observations in Meteorology and Oceanography, Prague, Czech Republic, 2005.
  14. J. Sun and N. A. Crook, “Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: model development and simulated data experiments,” Journal of the Atmospheric Sciences, vol. 54, no. 12, pp. 1642–1661, 1997. View at Google Scholar · View at Scopus
  15. J. Sun and N. A. Crook, “Dynamical and microphysical retrieval from doppler radar observations using a cloud model and its adjoint. Part II: retrieval experiments of an observed Florida convective storm,” Journal of the Atmospheric Sciences, vol. 55, no. 5, pp. 835–852, 1998. View at Google Scholar · View at Scopus
  16. J. Sun, “Initialization and numerical forecasting of a supercell storm observed during STEPS,” Monthly Weather Review, vol. 133, no. 4, pp. 793–813, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Honda and K. Koizumi, “The impact of the assimilation of precipitation data and Radar reflectivity with a pre-operational 4DVAR for the JMA nonhydrostatic model,” in Proceedings of the 10th Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, Land Surface (IOAS-AOLS '06), 2006.
  18. G. Evensen, “Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics,” Journal of Geophysical Research, vol. 99, no. 5, pp. 10143–10162, 1994. View at Google Scholar
  19. C. Snyder and F. Zhang, “Assimilation of simulated Doppler radar observations with an ensemble Kalman filter,” Monthly Weather Review, vol. 131, no. 8, pp. 1663–1677, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Zhang, C. Snyder, and J. Sun, “Impacts of initial estimate and observations on the convective-scale data assimilation with an ensemble Kalman filte,” Monthly Weather Review, vol. 132, pp. 1238–1253, 2004. View at Google Scholar
  21. M. Tong and M. Xue, “Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments,” Monthly Weather Review, vol. 133, no. 7, pp. 1789–1807, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Dowell, F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, “Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma supercell: ensemble Kalman filter experiments,” Monthly Weather Review, vol. 132, pp. 1982–2005, 2004. View at Google Scholar
  23. D. C. Dowell, L. J. Wicker, and C. Snyder, “Ensemble kalman filter assimilation of radar observations of the 8 may 2003 oklahoma city supercell: influences of reflectivity observations on storm-scale analyses,” Monthly Weather Review, vol. 139, no. 1, pp. 272–294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Yussouf and D. J. Stensrud, “Impact of phased-array radar observations over a short assimilation period: observing system simulation experiments using an ensemble Kalman filter,” Monthly Weather Review, vol. 138, no. 2, pp. 517–538, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Snook, M. Xue, and Y. Jung, “Analysis of a tornadic mesoscale convective vortex based on ensemble kalman filter assimilation of CASA X-band and WSR-88D radar data,” Monthly Weather Review, vol. 139, no. 11, pp. 3446–3468, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Snook, M. Xue, and Y. Jung, “Ensemble probabilistic forecasts of a tornadic mesoscale convective system from ensemble Kalman filter analyses using WSR-88D and CASA radar data,” Monthly Weather Review, vol. 140, pp. 2126–2146, 2012. View at Google Scholar
  27. P. L. Houtekamer and H. L. Mitchell, “A sequential ensemble Kalman filter for atmospheric data assimilation,” Monthly Weather Review, vol. 129, no. 1, pp. 123–137, 2001. View at Google Scholar · View at Scopus
  28. H. L. Mitchell, P. L. Houtekamer, and G. Pellerin, “Ensemble size, balance, and model-error representation in an ensemble Kalman filter,” Monthly Weather Review, vol. 130, no. 11, pp. 2791–2808, 2002. View at Google Scholar · View at Scopus
  29. T. M. Hamill and C. Snyder, “A hybrid ensemble Kalman filter-3D variational analysis scheme,” Monthly Weather Review, vol. 128, no. 8, pp. 2905–2919, 2000. View at Google Scholar · View at Scopus
  30. A. C. Lorenc, “The potential of the ensemble Kalman filter for NWP—a comparison with 4D-Var,” Quarterly Journal of the Royal Meteorological Society, vol. 129, no. 595, pp. 3183–3203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Buehner, “Ensemble-derived stationary and flow-dependent background-error covariances: evaluation in a quasi-operational NWP setting,” Quarterly Journal of the Royal Meteorological Society, vol. 131, no. 607, pp. 1013–1043, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Zupanski, “Maximum likelihood ensemble filter: theoretical aspects,” Monthly Weather Review, vol. 133, no. 6, pp. 1710–1726, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Tian, A. Dai, D. Yang, and Z. Xie, “Effects of precipitation-bias corrections on surface hydrology over northern latitudes,” Journal of Geophysical Research, vol. 112, no. 14, pp. 1984–2012, 2007. View at Publisher · View at Google Scholar
  34. C. Liu, Q. Xiao, and B. Wang, “An ensemble-based four-dimensional variational data assimilation scheme. Part I: technical formulation and preliminary test,” Monthly Weather Review, vol. 136, no. 9, pp. 3363–3373, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Liu, Q. Xiao, and B. Wang, “An ensemble-based four-dimensional variational data assimilation scheme. Part II: observing system simulation experiments with advanced research WRF (ARW),” Monthly Weather Review, vol. 137, no. 5, pp. 1687–1704, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. N. E. Bowler, J. Flowerdew, and S. R. Pring:, “Tests of different flavours of EnKF on a simple model,” Quarterly Journal of the Royal Meteorological Society, vol. 139, no. 675, pp. 1505–1519, 2013. View at Publisher · View at Google Scholar
  37. X. Wang, C. Snyder, and T. M. Hamill, “On the theoretical equivalence of differently proposed ensemble—3DVAR hybrid analysis schemes,” Monthly Weather Review, vol. 135, no. 1, pp. 222–227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. D. M. Barker and Coauthors, “The Weather Research and Forecasting model's community variational/ensemble data assimilation system: WRFDA,” Bulletin of the American Meteorological Society, vol. 93, pp. 831–843, 2012. View at Google Scholar
  39. Y. Li, X. Wang, and M. Xue, “Assimilation of radar radial velocity data with the WRF hybrid ensemble-3DVAR system for the prediction of hurricane Ike (2008),” Monthly Weather Review, vol. 140, pp. 3507–3524, 2012. View at Google Scholar
  40. F. Zhang, M. Zhang, and J. Poterjoy, “E4DVar: coupling an ensemble kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4DVar,” Monthly Weather Review, vol. 141, pp. 900–917, 2013. View at Google Scholar
  41. X. Wang, D. M. Barker, C. Snyder, and T. M. Hamill, “A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part I: observation system simulation experiment,” Monthly Weather Review, vol. 136, pp. 5116–5131, 2008. View at Google Scholar
  42. X. Wang, D. M. Barker, C. Snyder, and T. M. Hamill, “A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part II: real observation experiments,” Monthly Weather Review, vol. 136, pp. 5116–5131, 2008. View at Google Scholar
  43. M. Buehner, P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, “Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: description and single-observation experiments,” Monthly Weather Review, vol. 138, no. 5, pp. 1550–1566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Buehner, P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, “Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: one-month experiments with real observations,” Monthly Weather Review, vol. 138, no. 5, pp. 1567–1586, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. J. C. Derber and A. Rosati, “A global oceanic data assimilation system,” Journal of Physical Oceanography, vol. 19, pp. 1333–1347, 1989. View at Google Scholar
  46. J. Gao and M. Xue, “An efficient dual-resolution approach for ensemble data assimilation and tests with simulated Doppler radar data,” Monthly Weather Review, vol. 136, no. 3, pp. 945–963, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. P. S. Ray, “The morphology of several tornadic storms on 20 May 1977,” Journal of the Atmospheric Sciences, vol. 38, no. 8, pp. 1643–1663, 1981. View at Google Scholar · View at Scopus
  48. Y. L. Ying Lin, P. S. Ray, and K. W. Johnson, “Initialization of a modeled convective storm using Doppler radar-derived fields,” Monthly Weather Review, vol. 121, no. 10, pp. 2757–2775, 1993. View at Google Scholar · View at Scopus
  49. M. Xue, K. K. Droegemeier, and V. Wong, “The advanced regional prediction system (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: model dynamics and verification,” Meteorology and Atmospheric Physics, vol. 75, no. 3-4, pp. 161–193, 2000. View at Google Scholar · View at Scopus
  50. M. Xue, K. K. Droegemeier, V. Wong et al., “The advanced regional prediction system (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: model physics and applications,” Meteorology and Atmospheric Physics, vol. 76, no. 3-4, pp. 143–165, 2001. View at Google Scholar · View at Scopus
  51. J. Gao, M. Xue, A. Shapiro, Q. Xu, and K. K. Droegemeier, “Three-dimensional simple adjoint velocity retrievals from single-Doppler radar,” Journal of Atmospheric and Oceanic Technology, vol. 18, no. 1, pp. 26–38, 2001. View at Google Scholar · View at Scopus
  52. P. L. Jr. Smith, C. G. Myers, and H. D. Orville, “Radar reflectivity factor calculations in numerical cloud models using bulk parameterization of precipitation processes,” Journal of Applied Meteorology, vol. 14, pp. 1156–1165, 1975. View at Google Scholar
  53. B. S. Ferrier, “A double-moment multiple-phase four-class bulk ice scheme. Part I: description,” Journal of the Atmospheric Sciences, vol. 51, no. 2, pp. 249–280, 1994. View at Google Scholar · View at Scopus
  54. M. Zupanski, S. J. Fletcher, I. M. Navon et al., “Initiation of ensemble data assimilation,” Tellus A, vol. 58, no. 2, pp. 159–170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Penny, “The hybrid local ensemble transform kalman filter,” Monthly Weather Review. Accepted.