Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2013, Article ID 649156, 20 pages
http://dx.doi.org/10.1155/2013/649156
Review Article

Aerosol-Precipitation Interactions over India: Review and Future Perspectives

1Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad 380009, India
2Computational Earth Sciences Group, Centre for Development of Advanced Computing, Pune 411007, India

Received 2 August 2013; Revised 8 October 2013; Accepted 24 October 2013

Academic Editor: Ana I. Calvo

Copyright © 2013 S. Ramachandran and S. Kedia. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Solomon, D. Qin, M. Manning et al., “Climate change 2007: the physical science basis,” in Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, Mass, USA, 2007. View at Google Scholar
  2. S. Ramachandran and R. Cherian, “Regional and seasonal variations in aerosol optical characteristics and their frequency distributions over India during 2001–2005,” Journal of Geophysical Research D, vol. 113, no. 8, Article ID D08207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Ramachandran and S. Kedia, “Black carbon aerosols over an urban region: radiative forcing and climate impact,” Journal of Geophysical Research D, vol. 115, no. 10, Article ID D10202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Krishnan, V. Kumar, M. Sugi, and J. Yoshimura, “Internal feedbacks from monsoon-midlatitude interactions during droughts in the Indian summer monsoon,” Journal of the Atmospheric Sciences, vol. 66, no. 3, pp. 553–578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Neena, E. Suhas, and B. N. Goswami, “Leading role of internal dynamics in the 2009 Indian summer monsoon drought,” Journal of Geophysical Research D, vol. 116, no. 13, Article ID D13103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. S. K. Dash, M. A. Kulkarni, U. C. Mohanty, and K. Prasad, “Changes in the characteristics of rain events in India,” Journal of Geophysical Research D, vol. 114, no. 10, Article ID D10109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Parthasarathy, A. A. Munot, and D. R. Kothawale, “Monthly and seasonal rainfall series for all India homogeneous regions and meteorological sub-divisions: 1871–1994,” Research Report, Indian Institute of Tropical Meteorology, Pune, India, 1995. View at Google Scholar
  8. S. Dey and L. Di Girolamo, “A climatology of aerosol optical and microphysical properties over the Indian subcontinent from 9 years (2000–2008) of Multiangle Imaging Spectroradiometer (MISR) data,” Journal of Geophysical Research D, vol. 115, no. 15, Article ID D15204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. I. Flossmann, W. D. Hall, and H. R. Pruppacher, “A theoretical study of the wet removal of atmospheric pollutants. Part I: the redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops,” Journal of the Atmospheric Sciences, vol. 42, no. 6, pp. 583–606, 1985. View at Google Scholar · View at Scopus
  10. V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, “Atmosphere: aerosols, climate, and the hydrological cycle,” Science, vol. 294, no. 5549, pp. 2119–2124, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. A. S. Ackerman, O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, “Reduction of tropical cloudiness by soot,” Science, vol. 288, no. 5468, pp. 1042–1047, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. C. E. Chung, V. Ramanathan, and J. T. Kiehl, “Effects of the South Asian absorbing haze on the northeast monsoon and surface-air heat exchange,” Journal of Climate, vol. 15, no. 17, pp. 2462–2476, 2002. View at Google Scholar · View at Scopus
  13. S. Menon, J. Hansen, L. Nazarenko, and Y. Luo, “Climate effects of black carbon aerosols in China and India,” Science, vol. 297, no. 5590, pp. 2250–2253, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Ramanathan, C. Chung, D. Kim et al., “Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 15, pp. 5326–5333, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. G. A. Meehl, J. M. Arblaster, and W. D. Collins, “Effects of black carbon aerosols on the Indian monsoon,” Journal of Climate, vol. 21, no. 12, pp. 2869–2882, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. Bollasina, Y. Ming, and V. Ramaswamy, “Anthropogenic aerosols and the weakening of the south asian summer monsoon,” Science, vol. 334, no. 6055, pp. 502–505, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Cherian, C. Venkataraman, J. Quaas, and S. Ramachandran, “GCM simulations of anthropogenic aerosol-induced changes in aerosol extinction, atmospheric heating and precipitation over India,” Journal of Geophysical Research, vol. 118, pp. 2938–2955, 2013. View at Google Scholar
  18. K.-M. Lau and K.-M. Kim, “Observational relationships between aerosol and Asian monsoon rainfall, and circulation,” Geophysical Research Letters, vol. 33, no. 21, Article ID L21810, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. K. M. Lau, M. K. Kim, and K. M. Kim, “Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau,” Climate Dynamics, vol. 26, no. 7-8, pp. 855–864, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K.-M. Lau, V. Ramanathan, G.-X. Wu et al., “The joint aerosol-monsoon experiment: a new challenge for monoon climate research,” Bulletin of the American Meteorological Society, vol. 89, no. 3, pp. 369–383, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Kuhlmann and J. Quaas, “How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data,” Atmospheric Chemistry and Physics, vol. 10, no. 10, pp. 4673–4688, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. P. K. Patra, S. K. Behera, J. R. Herman, S. Maksyutov, H. Akimoto, and T. Yamagata, “The Indian summer monsoon rainfall: interplay of coupled dynamics, radiation and cloud microphysics,” Atmospheric Chemistry and Physics, vol. 5, no. 8, pp. 2181–2188, 2005. View at Google Scholar · View at Scopus
  23. P. Chylek, M. K. Dubey, U. Lohmann et al., “Aerosol indirect effect over the Indian Ocean,” Geophysical Research Letters, vol. 33, no. 6, Article ID L06806, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. P. R. C. Rahul, P. S. Salvekar, and P. C. S. Devara, “Aerosol optical depth variability over Arabian Sea during drought and normal years of Indian monsoon,” Geophysical Research Letters, vol. 35, no. 22, Article ID L22812, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Gautam, N. C. Hsu, K.-M. Lau, and M. Kafatos, “Aerosol and rainfall variability over the Indian monsoon region: distributions, trends and coupling,” Annales Geophysicae, vol. 27, no. 9, pp. 3691–3703, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. V. R. Kiran, M. Rajeevan, S. V. B. Rao, and N. P. Rao, “Analysis of variations of cloud and aerosol properties associated with active and break spells of Indian summer monsoon using MODIS data,” Geophysical Research Letters, vol. 36, no. 9, Article ID L09706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. G. Manoj, P. C. S. Devara, P. D. Safai, and B. N. Goswami, “Absorbing aerosols facilitate transition of Indian monsoon breaks to active spells,” Climate Dynamics, vol. 37, no. 11-12, pp. 2181–2198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Pandithurai, S. Dipu, T. V. Prabha, R. S. Maheskumar, J. R. Kulkarni, and B. N. Goswami, “Aerosol effect on droplet spectral dispersion in warm continental cumuli,” Journal of Geophysical Research, vol. 117, no. 16. View at Publisher · View at Google Scholar
  29. L. A. Remer, R. G. Kleidman, R. C. Levy et al., “Global aerosol climatology from the MODIS satellite sensors,” Journal of Geophysical Research D, vol. 113, no. 14, Article ID D14S07, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. D. King, W. P. Menzel, Y. J. Kaufman et al., “Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS,” IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 2, pp. 442–456, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present, and future,” Bulletin of the American Meteorological Society, vol. 80, no. 11, pp. 2229–2259, 1999. View at Google Scholar · View at Scopus
  32. B. N. Holben, D. Tanré, A. Smirnov et al., “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” Journal of Geophysical Research D, vol. 106, no. 11, pp. 12067–12097, 2001. View at Google Scholar · View at Scopus
  33. M. King, S. C. Tsay, S. Platnick, M. Wang, and K.-N. Liou, Cloud Retrieval Algorithms For MODIS: Optical Thickness, Effective Particle Radius and Thermodynamic Phase, Algorithm Theoretical Basis Document ATBD-MOD-05, NASA GSFC, 1998.
  34. R. H. H. Janssen, L. N. Ganzeveld, P. Kabat, M. Kulmala, T. Nieminen, and R. A. Roebeling, “Estimating seasonal variations in cloud droplet number concentration over the boreal forest from satellite observations,” Atmospheric Chemistry and Physics, vol. 11, no. 15, pp. 7701–7713, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Nakajima, M. D. King, L. F. Radke, and J. D. Spinhirne, “Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part II: marine stratocumulus observations,” Journal of the Atmospheric Sciences, vol. 48, no. 5, pp. 728–750, 1991. View at Google Scholar · View at Scopus
  36. G. G. Mace, Y. Zhang, S. Platnick, M. D. King, P. Minnis, and P. Yang, “Evaluation of cirrus cloud properties derived from MODIS data using cloud properties derived from ground-based observations collected at the ARM SGP site,” Journal of Applied Meteorology, vol. 44, no. 2, pp. 221–240, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. O. Torres, A. Tanskanen, B. Veihelmann et al., “Aerosols and surface UV products form Ozone Monitoring Instrument observations: an overview,” Journal of Geophysical Research D, vol. 112, no. 24, Article ID D24S47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Habib, C. Venkataraman, I. Chiapello, S. Ramachandran, O. Boucher, and M. Shekar Reddy, “Seasonal and interannual variability in absorbing aerosols over India derived from TOMS: relationship to regional meteorology and emissions,” Atmospheric Environment, vol. 40, no. 11, pp. 1909–1921, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Srivastava, S. Ramachandran, T. A. Rajesh, and S. Kedia, “Aerosol radiative forcing deduced from observations and models over an urban location and sensitivity to single scattering albedo,” Atmospheric Environment, vol. 45, no. 34, pp. 6163–6171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Rosenfeld, “Suppression of rain and snow by urban and industrial air pollution,” Science, vol. 287, no. 5459, pp. 1793–1796, 2000. View at Publisher · View at Google Scholar · View at Scopus