Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2013 (2013), Article ID 740453, 9 pages
http://dx.doi.org/10.1155/2013/740453
Research Article

Interannual and Intraseasonal Variability in Fine Mode Particles over Delhi: Influence of Meteorology

1Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi 110060, India
2Department of Environmental Engineering, P. E. S. College of Engineering, Mandya, Karnataka 571401, India
3Sharda University, Knowledge Park III, Greater Noida 201306, India

Received 23 May 2013; Revised 26 September 2013; Accepted 3 October 2013

Academic Editor: D. M. Chate

Copyright © 2013 S. Tiwari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Dey, S. N. Tripathi, R. P. Singh, and B. Holben, “Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin,” Journal of Geophysical Research D, vol. 109, no. 20, Article ID D20211, 13 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Singh, S. Nath, R. Kohli, and R. Singh, “Aerosols over Delhi during pre-monsoon months: characteristics and effects on surface radiation forcing,” Geophysical Research Letters, vol. 32, no. 13, Article ID L13808, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Pandithurai, S. Dipu, K. K. Dani et al., “Aerosol radiative forcing during dust events over New Delhi, India,” Journal of Geophysical Research D, vol. 113, Article ID D13209, 13 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. K. A. Srivastava and S. N. Tripathi, “Numerical study for production of space charge within the stratiform cloud,” Journal of Earth System Science, vol. 119, no. 5, pp. 627–638, 2010. View at Google Scholar · View at Scopus
  5. D. W. Dockery and C. A. Pope, “Acute respiratory effects of particulate air pollution,” Annual Review of Public Health, vol. 15, pp. 107–132, 1994. View at Google Scholar · View at Scopus
  6. W. P. Anderson, C. M. Reid, and G. L. Jennings, “Pet ownership and risk factors for cardiovascular disease,” Medical Journal of Australia, vol. 157, no. 5, pp. 298–301, 1992. View at Google Scholar · View at Scopus
  7. J. Chen, R. P. Wildman, D. Gu et al., “Prevalence of decreased kidney function in Chinese adults aged 35 to 74 years,” Kidney International, vol. 68, no. 6, pp. 2837–2845, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Dominici, R. D. Peng, M. L. Bell et al., “Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases,” Journal of the American Medical Association, vol. 295, no. 10, pp. 1127–1134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. G. E. R. Schwartz, L. G. S. Russek, L. A. Nelson, and C. Barentsen, “Accuracy and replicability of anomalous after-death communication across highly skilled mediums,” Journal of the Society for Psychical Research, vol. 65, no. 862, pp. 1–25, 2001. View at Google Scholar
  10. Y. Wang, C. Lee, S. Tiep et al., “Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity,” Cell, vol. 113, no. 2, pp. 159–170, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Kandlikar, “The causes and consequences of particulate air pollution in urban India: a synthesis of the science,” Annual Review of Energy and the Environment, vol. 25, pp. 629–684, 2000. View at Google Scholar · View at Scopus
  12. Central pollution Control Board (CPCB), 2008 Epidemiological study on effect of air pollution on human health (adults) in Delhi. Environmental Health Series: EHS/1/2008, http://www.cpcb.nic.in.
  13. S. Madronich, “Chemical evolution of gaseous air pollutants down-wind of tropical megacities: Mexico City case study,” Atmospheric Environment, vol. 40, no. 31, pp. 6012–6018, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Jaenicke, “Protein folding and Protein Association,” Angewandte Chemie, vol. 23, no. 6, pp. 395–413, 1984. View at Google Scholar · View at Scopus
  15. J. W. Milne, D. B. Roberts, S. J. Walk, and D. J. William, “Sources of Sydney brown haze,” in The Urban Atmosphere—Sydney. A Case Study, CSIRO, Highett, Australia, 1982. View at Google Scholar
  16. P. Goyal and S. Sidhartha, “Present scenario of air quality in Delhi: a case study of CNG implementation,” Atmospheric Environment, vol. 37, no. 38, pp. 5423–5431, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Kumar and T. C. Foster, “Shift in induction mechanisms underlies an age-dependent increase in DHPG-induced synaptic depression at CA3-CA1 synapses,” Journal of Neurophysiology, vol. 98, no. 5, pp. 2729–2736, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Bishoi, A. Prakash, and V. K. Jain, “A comparative study of air quality index based on factor analysis and US-EPA methods for an urban environment,” Aerosol and Air Quality Research, vol. 9, no. 1, pp. 1–17, 2009. View at Google Scholar · View at Scopus
  19. V. Kathuria, “Impact of CNG on Delhi’s air pollution,” Economic and Political Weekly, vol. 40, pp. 1907–1916, 2005. View at Google Scholar
  20. B. R. Gurjar, J. A. Van Aardenne, J. Lelieveld, and M. Mohan, “Emission estimates and trends (1990–2000) for megacity Delhi and implications,” Atmospheric Environment, vol. 38, no. 33, pp. 5663–5681, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Faiz, C. Weaver, K. Sinha, M. Walsh, and J. Carbajo, Air Pollution from Motor Vehicles: Issues and Options for Developing Countries, The World Bank, Washington, DC, USA, 1992.
  22. A. K. Srivastava, S. Singh, S. Tiwari, V. P. Kanawade, and D. S. Bisht, “Variation between near-surface and columnar aerosol characteristics during the winter and summer at Delhi in the Indo-Gangetic Basin,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 77, pp. 57–66, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Tiwari, A. K. Srivastava, D. S. Bisht, P. Parmita, M. K. Srivastava, and S. D. Attri, “Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: influence of meteorology,” Atmospheric Research, vol. 125-126, pp. 50–62, 2013. View at Google Scholar
  24. S. Tiwari, D. M. Chate, P. Pragya, K. Ali, and D. S. Bisht, “Variations in mass of the PM10,PM2.5 and PM1 during the monsoon and the winter at New Delhi,” Aerosol and Air Quality Research, vol. 12, no. 1, pp. 20–29, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Tiwari, A. K. Srivastava, D. S. Bisht, and P. D. Safai, “Assessment of carbonaceous aerosol over Delhi in the Indo-Gangetic Basin: characterization, sources and temporal variability,” Natural Hazards, vol. 65, pp. 1745–1764, 2013. View at Google Scholar
  26. S. Tiwari, D. M. Chate, M. K. Srivastava et al., “Statistical evaluation of PM10 and distribution of PM1, PM2.5, and PM10 in ambient air due to extreme fireworks episodes (Deepawali festivals) in megacity Delhi,” Natural Hazards, vol. 61, no. 2, pp. 521–531, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. A. K. Attri, U. Kumar, and V. K. Jain, “Formation of ozone by fireworks,” Nature, vol. 411, no. 6841, pp. 1015–1021, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. R. P. Singh, S. Dey, and B. Holben, “Aerosol behaviour in Kanpur during Diwali festival,” Current Science, vol. 84, no. 10, pp. 1302–1303, 2003. View at Google Scholar · View at Scopus
  29. S. C. Barman, R. Singh, M. P. S. Negi, and S. K. Bhargava, “Fine particles (PM2.5) in ambient air of Lucknow city due to fireworks on Diwali festival,” Journal of Environmental Biology, vol. 30, no. 5, pp. 625–632, 2009. View at Google Scholar · View at Scopus
  30. W. Bach, A. Daniels, L. Dickinson et al., “Firework’s pollution and health,” International Journal of Environmental Studies, vol. 7, pp. 183–192, 1975. View at Google Scholar
  31. B. Wehner, A. Wiedensohler, and J. Heintzenberg, “Submicrometer aerosol size distributions and mass concentration of the Millennium fireworks 2000 in Leipzig, Germany,” Journal of Aerosol Science, vol. 31, no. 12, pp. 1489–1493, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Liu, D. Rutherford, M. Kinsey, and K. A. Prather, “Real-time monitoring of pyrotechnically derived aerosol particles in the troposphere,” Analytical Chemistry, vol. 69, no. 10, pp. 1808–1814, 1997. View at Google Scholar · View at Scopus
  33. Y. Wang, G. Zhuang, C. Xu, and Z. An, “The air pollution caused by the burning of fireworks during the lantern festival in Beijing,” Atmospheric Environment, vol. 41, no. 2, pp. 417–431, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. A.-P. Hyvärinen, H. Lihavainen, M. Komppula et al., “Aerosol measurements at the Gual Pahari EUCAARI station: preliminary results from in-situ measurements,” Atmospheric Chemistry and Physics, vol. 10, no. 15, pp. 7241–7252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. NASA (National Aeronautics and Space Administration), Top Science, Exploration and Discovery Stories of 2008.
  36. A. Awasthi, R. Agarwal, S. K. Mittal, N. Singh, K. Singh, and P. K. Gupta, “Study of size and mass distribution of particulate matter due to crop residue burning with seasonal variation in rural area of Punjab, India,” Journal of Environmental Monitoring, vol. 13, no. 4, pp. 1073–1081, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. K. V. S. Badarinath, T. R. K. Chand, and V. K. Prasad, “Agriculture crop residue burning in the Indo-Gangetic Plains: a study using IRS-P6 AWiFS satellite data,” Current Science, vol. 91, no. 8, pp. 1085–1089, 2006. View at Google Scholar · View at Scopus
  38. P. S. Khillare, T. Agarwal, and V. Shridhar, “Impact of CNG implementation on PAHs concentration in the ambient air of Delhi: a comparative assessment of pre- and post-CNG scenario,” Environmental Monitoring and Assessment, vol. 147, no. 1–3, pp. 223–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. C. C. O. Reynolds and M. Kandlikar, “Climate impacts of air quality policy: switching to a natural gas-fueled public transportation system in New Delhi,” Environmental Science and Technology, vol. 42, no. 16, pp. 5860–5865, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Gadde, S. Bonnet, C. Menke, and S. Garivait, “Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines,” Environmental Pollution, vol. 157, no. 5, pp. 1554–1558, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Ali, G. A. Momin, S. Tiwari, P. D. Safai, D. M. Chate, and P. S. P. Rao, “Fog and precipitation chemistry at Delhi, North India,” Atmospheric Environment, vol. 38, no. 25, pp. 4215–4222, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. S. K. Guttikunda and G. Calori, “A GIS based emissions inventory at 1 km × 1 km spatial resolution for air pollution analysis in Delhi, India,” Atmospheric Environment, vol. 67, pp. 101–111, 2013. View at Google Scholar
  43. S. Dey, L. D. Girolamo, A. V. Donkelaar, S. N. Tripathi, T. Gupta, and M. Mohan, “Variability of outdoor fine particulate (PM2.5) concentration in the Indian Subcontinent: a remote sensing approach,” Remote Sensing of Environ, vol. 127, pp. 153–161, 2012. View at Google Scholar
  44. K. He, F. Yang, Y. Ma et al., “The characteristics of PM2.5 in Beijing, China,” Atmospheric Environment, vol. 35, no. 29, pp. 4959–4970, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. J. G. Watson, “Visibility: science and regulation,” Journal of the Air and Waste Management Association, vol. 52, no. 6, pp. 628–713, 2002. View at Google Scholar · View at Scopus
  46. S. F. Rajšić, M. D. Tasić, V. T. Novaković, and M. N. Tomašević, “First assessment of the PM10 and PM2.5 particulate level in the ambient air of Belgrade City,” Environmental Science and Pollution Research, vol. 11, no. 3, pp. 158–164, 2004. View at Google Scholar · View at Scopus
  47. EPCA report number 9 (November 2004) Report on the increase in the number of three-wheelers in Delhi, In response to the Hon'ble Supreme Court Order Dated October 8, 2004, In response to the I.A. 217 of 2003.
  48. N. Singh, Role of atmospheric ions on condensation and cloud formation processes [Ph.D. thesis], University of Roorkee, Roorkee, India, 1985.
  49. R. R. Ranjan, H. P. Joshi, and K. N. Iyer, “Spectral variation of total column aerosol optical depth over Rajkot: a tropical semi-arid Indian station,” Aerosol and Air Quality Research, vol. 7, no. 1, pp. 33–45, 2007. View at Google Scholar
  50. P. C. S. Devara and P. E. Raj, “A lidar study of atmospheric aerosols during two contrasting monsoon seasons,” Atmosfera, vol. 11, no. 4, pp. 199–204, 1998. View at Google Scholar · View at Scopus
  51. J. Wallace and P. Kanaroglou, “The effect of temperature inversions on ground-level nitrogen dioxide (NO2) and fine particulate matter (PM2.5) using temperature profiles from the Atmospheric Infrared Sounder (AIRS),” Science of the Total Environment, vol. 407, no. 18, pp. 5085–5095, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. D. M. Chate and P. C. S. Devara, “Growth properties of submicron aerosols during cold season in India,” Aerosol and Air Quality Research, vol. 5, no. 2, pp. 127–140, 2005. View at Google Scholar
  53. S. Cheng and K. Lam, “An analysis of winds affecting air pollution concentrations in Hong Kong,” Atmospheric Environment, vol. 32, no. 14-15, pp. 2559–2567, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Chaloulakou, P. Kassomenos, N. Spyrellis, P. Demokritou, and P. Koutrakis, “Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece,” Atmospheric Environment, vol. 37, no. 5, pp. 649–660, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Ruellan and H. Cachier, “Characterisation of fresh particulate vehicular exhausts near a Paris high flow road,” Atmospheric Environment, vol. 35, no. 2, pp. 453–468, 2001. View at Google Scholar · View at Scopus