Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2013, Article ID 792631, 16 pages
http://dx.doi.org/10.1155/2013/792631
Research Article

Retrieving 3D Wind Field from Phased Array Radar Rapid Scans

1Tianjin Institute of Meteorological Science, Tianjin 300074, China
2College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
3NOAA/OAR National Severe Storms Laboratory, David L. Boren Boulevard, Norman, OK 73072, USA
4Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, OK 73072, USA

Received 11 May 2013; Revised 1 July 2013; Accepted 19 July 2013

Academic Editor: Jidong Gao

Copyright © 2013 Xiaobin Qiu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The previous two-dimensional simple adjoint method for retrieving horizontal wind field from a time sequence of single-Doppler scans of reflectivity and/or radial velocity is further developed into a new method to retrieve both horizontal and vertical winds at high temporal and spatial resolutions. This new method performs two steps. First, the horizontal wind field is retrieved on the conical surface at each tilt (elevation angle) of radar scan. Second, the vertical velocity field is retrieved in a vertical cross-section along the radar beam with the horizontal velocity given from the first step. The method is applied to phased array radar (PAR) rapid scans of the storm winds and reflectivity in a strong microburst event and is shown to be able to retrieve the three-dimensional wind field around a targeted downdraft within the storm that subsequently produced a damaging microburst. The method is computationally very efficient and can be used for real-time applications with PAR rapid scans.