Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2013 (2013), Article ID 793957, 12 pages
http://dx.doi.org/10.1155/2013/793957
Research Article

Atmospheric Water Monitoring by Using Ground-Based GPS during Heavy Rains Produced by TPV and SWV

1College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China
2Meteorological Observatory of Sichuan Province, Chengdu 610072, China

Received 22 August 2013; Revised 13 October 2013; Accepted 14 October 2013

Academic Editor: Harry D. Kambezidis

Copyright © 2013 Guoping Li and Jia Deng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Bevis, S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, “GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system,” Journal of Geophysical Research, vol. 97, pp. 15787–15801, 1992. View at Google Scholar
  2. S. Marcus, J. Kim, T. Chin, D. Danielson, and J. Laber, “Influence of GPS precipitable water vapor retrievals on quantitative precipitation forecasting in Southern California,” Journal of Applied Meteorology and Climatology, vol. 46, no. 11, pp. 1828–1839, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Jin, Z. Li, and J. Cho, “Integrated water vapor field and multiscale variations over China from GPS measurements,” Journal of Applied Meteorology and Climatology, vol. 47, no. 11, pp. 3008–3015, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Y.-H. K. Ying-Hwa Kuo, Y.-R. G. Yong-Run Guo, and E. R. Westwater, “Assimilation of precipitable water measurements into a mesoscale numerical model,” Monthly Weather Review, vol. 121, no. 4, pp. 1215–1238, 1993. View at Google Scholar · View at Scopus
  5. C. Rocken, T. Hove, M. Johnson et al., “GPS/STORM-GPS sensing of atmospheric water vapor for meteorology,” Journal of Atmospheric and Oceanic Technology, vol. 12, pp. 468–478, 1995. View at Google Scholar
  6. T. Iwabuchi, I. Naito, and N. Mannoji, “A comparison of Global Positioning System retrieved precipitable water vapor with the numerical weather prediction analysis data over the Japanese Islands,” Journal of Geophysical Research D, vol. 105, no. 4, pp. 4573–4585, 2000. View at Google Scholar · View at Scopus
  7. H. C. Baker, A. H. Dodson, N. T. Penna, M. Higgins, and D. Offiler, “Ground-based GPS water vapour estimation: potential for meteorological forecasting,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 63, no. 12, pp. 1305–1314, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Gendt, G. Dick, C. Reigber, M. Tomassini, Y. Liu, and M. Ramatschi, “Near real time GPS water vapor monitoring for numerical weather prediction in Germany,” Journal of the Meteorological Society of Japan, vol. 82, no. 1B, pp. 361–370, 2004. View at Google Scholar · View at Scopus
  9. S. de Haan, S. Barlag, H. K. Baltink, F. Debie, and H. van der Marel, “Synergetic use of GPS water vapor and meteosat images for synoptic weather forecasting,” Journal of Applied Meteorology, vol. 43, no. 3, pp. 514–518, 2004. View at Google Scholar · View at Scopus
  10. C. Li, J. Mao, J. Li, and Q. Xia, “Remote sensing precipitable water with GPS,” Chinese Science Bulletin, vol. 44, no. 11, pp. 1041–1045, 1999. View at Google Scholar · View at Scopus
  11. T. Sato and F. Kimura, “Diurnal cycle of convective instability around the Central Mountains in Japan during the warm season,” Journal of the Atmospheric Sciences, vol. 62, no. 5, pp. 1626–1636, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. O. Okamura and F. Kimura, “Behavior of GPS-derived precipitable water vapor in the mountain lee after the passage of a cold front,” Geophysical Research Letters, vol. 30, pp. 17–46, 2003. View at Google Scholar · View at Scopus
  13. Y.-A. Liou and C.-Y. Huang, “GPS observations of PW during the passage of a typhoon,” Earth, Planets and Space, vol. 52, no. 10, pp. 709–712, 2000. View at Google Scholar · View at Scopus
  14. S.-Y. Ha, Y.-H. Kuo, Y.-R. Guo, C. Rocken, and T. Van Hove, “Comparison of GPS slant wet delay measurements with model simulations during the passage of a squall line,” Geophysical Research Letters, vol. 29, pp. 2113–2116, 2002. View at Google Scholar · View at Scopus
  15. G. Li, D. Huang, B. Liu, and J. Chen, “Experiment on driving precipitable water vaport from ground-based GPS network in Chengdu Plain,” Geo-Spatial Information Science, vol. 10, no. 3, pp. 181–185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Y.-H. Kuo, X. Zou, S. J. Chen et al., “A GPS/MET Sounding through an Intense Upper-Level Front,” Bulletin of the American Meteorological Society, vol. 79, no. 4, pp. 617–626, 1998. View at Google Scholar · View at Scopus
  17. H. Seko, S. Shimada, H. Nakamura, and T. Kato, “Three-dimensional distribution of water vapor estimated from tropospheric delay of GPS data in a mesoscale precipitation system of the Baiu front,” Earth, Planets and Space, vol. 52, no. 11, pp. 927–933, 2000. View at Google Scholar · View at Scopus
  18. S. De Haan, H. Van Der Marel, and S. Barlag, “Comparison of GPS slant delay measurements to a numerical model: case study of a cold front passage,” Physics and Chemistry of the Earth, vol. 27, no. 4-5, pp. 317–322, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Reigber, G. Gendt, G. Dick, and M. Tomassini, “Water vapor monitoring for weather forecasts,” GPS World, vol. 13, no. 1, pp. 18–27, 2002. View at Google Scholar · View at Scopus
  20. J. Morland and C. Mätzler, “Spatial interpolation of GPS integrated water vapour measurements made in the Swiss Alps,” Meteorological Applications, vol. 14, no. 1, pp. 15–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Eresmaa, M. Nordman, M. Poutanen, J. Syrjärinne, J.-P. Luntama, and H. Järvinen, “Parameterization of tropospheric delay correction for mobile GNSS positioning: a case study of a cold front passage,” Meteorological Applications, vol. 15, no. 4, pp. 447–454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. A. Mazany, S. Businger, S. I. Gutman, and W. Roeder, “A lightning prediction index that utilizes GPS integrated precipitable water vapor,” Weather and Forecasting, vol. 17, no. 5, pp. 1034–1047, 2002. View at Google Scholar · View at Scopus
  23. K. Kehrer, B. Graf, and W. P. Roeder, “Global positioning system (GPS) precipitable water in forecasting lightning at spaceport canaveral,” Weather and Forecasting, vol. 23, no. 2, pp. 219–232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Seko, H. Nakamura, Y. Shoji, and T. Iwabuchi, “The meso-γ scale water vapor distribution associated with a thunderstorm calculated from a dense network of GPS receivers,” Journal of the Meteorological Society of Japan, vol. 82, no. 1 B, pp. 569–586, 2004. View at Google Scholar · View at Scopus
  25. R. Ohtani, “Detection of water vapor variations driven by thermally-induced local ciculations using the Japanese continuous GPS array,” Geophysical Research Letters, vol. 28, no. 1, pp. 151–154, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Li, F. Kimura, T. Sato, and D. Huang, “A composite analysis of diurnal cycle of GPS precipitable water vapor in central Japan during Calm Summer Days,” Theoretical and Applied Climatology, vol. 92, no. 1-2, pp. 15–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. D. K. Adams, R. M. S. Fernandes, and J. M. F. Maia, “GNSS precipitable water vapor from an Amazonian rain forest flux tower,” Journal of Atmospheric and Oceanic Technology, vol. 28, no. 10, pp. 1192–1198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Lee, J.-U. Park, J. Cho, J. Baek, and H. W. Kim, “A characteristic analysis of fog using GPS-derived integrated water vapour,” Meteorological Applications, vol. 17, no. 4, pp. 463–473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. D. M. James, “GPS Precipitable water as a diagnostic of the north American monsoon in California and Nevada,” Journal of Climate, vol. 26, pp. 1432–1444, 2013. View at Google Scholar
  30. T. Takagi, F. Kimura, and S. Kono, “Diurnal variation of GPS precipitable water at Lhasa in premonsoon and monsoon periods,” Journal of the Meteorological Society of Japan, vol. 78, no. 2, pp. 175–180, 2000. View at Google Scholar · View at Scopus
  31. S. Pramualsakdikul, R. Haas, G. Elgered, and H.-G. Scherneck, “Sensing of diurnal and semi-diurnal variability in the water vapour content in the tropics using GPS measurements,” Meteorological Applications, vol. 14, no. 4, pp. 403–412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Wang and I. Orlanski, “Study of a heavy rain vortex formed over the eastern flank of the Tibetan Plateau,” Monthly Weather Review, vol. 115, no. 7, pp. 1370–1393, 1987. View at Google Scholar · View at Scopus
  33. C.-P. Chang, L. Yi, and G. T.-J. Chen, “A numerical simulation of vortex development during the 1992 east Asian summer monsoon onset using the navy's regional model,” Monthly Weather Review, vol. 128, no. 6, pp. 1604–1631, 2000. View at Google Scholar · View at Scopus
  34. L. Chen and Z. Luo, “A preliminary study of the dynamics of eastward shifting cyclonic vortices,” Advances in Atmospheric Sciences, vol. 20, no. 3, pp. 323–332, 2003. View at Google Scholar · View at Scopus
  35. S. Gao and F. Ping, “An experiment study of lee vortex with large topography forcing,” Chinese Science Bulletin, vol. 50, no. 3, pp. 248–255, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Shen, E. R. Reiter, and J. F. Bresch, “Numerical simulation of the development of vortices over the Qinghai-Xizang (Tibet) Plateau,” Meteorology and Atmospheric Physics, vol. 35, no. 1-2, pp. 70–95, 1986. View at Publisher · View at Google Scholar · View at Scopus
  37. W. W. Wei Wang, Y.-H. K. Ying-Hwa Kuo, and T. T. Warner, “A diabatically driven mesoscale vortex in the lee of the Tibetan Plateau,” Monthly Weather Review, vol. 121, no. 9, pp. 2542–2561, 1993. View at Google Scholar · View at Scopus
  38. G. Zhu and S. Chen, “Analysis and comparison of mesoscale convective systems over the Qinghai-Xizang (Tibetan) Plateau,” Advances in Atmospheric Sciences, vol. 20, no. 3, pp. 311–322, 2003. View at Google Scholar · View at Scopus
  39. L. Li, R. Zhang, and M. Wen, “Diagnostic analysis of the evolution mechanism for a vortex over the Tibetan Plateau in June 2008,” Advances in Atmospheric Sciences, vol. 28, no. 4, pp. 797–808, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. U. Hugentobler, S. Schaer, and P. Fridez, Bernese GPS software version 4.2, Astronomical Institute, University of Berne, 2001.
  41. J. Saastamoinen, “Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The use of artificial satellites for geodesy,” Geophysical Monograph Series, vol. 15, pp. 247–251, 1975. View at Google Scholar
  42. J. Guo, G. P. Li, and D. F. Huang, “The troposphere weighted average temperature and the local modeling in Sichuan-Chongqing region based on 40 years of radiosonde data,” Journal of Wuhan University, vol. 33, pp. 43–46, 2008 (Chinese). View at Google Scholar
  43. T. B. Zhao, L. K. Ai, and J. M. Feng, “An intercomparison between NCEP reanalysis and observed data over China,” Climatic and Environmental Research, vol. 9, pp. 278–294, 2004 (Chinese). View at Google Scholar