Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2013, Article ID 947874, 12 pages
http://dx.doi.org/10.1155/2013/947874
Research Article

Impact of a Diagnostic Pressure Equation Constraint on Tornadic Supercell Thunderstorm Forecasts Initialized Using 3DVAR Radar Data Assimilation

1Center for Analysis and Prediction of Storms, University of Oklahoma, 120 David L. Boren Boulevard, Norman, OK 73072, USA
2National Severe Storms Laboratory, Norman, OK 73072, USA
3School of Meteorology, University of Oklahoma, Norman, OK 73072, USA

Received 9 April 2013; Revised 25 July 2013; Accepted 13 September 2013

Academic Editor: Louis Wicker

Copyright © 2013 Guoqing Ge et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Crook and J. D. Tuttle, “Numerical simulations initialized with radar-derived winds—part II: forecasts of three gust-front cases,” Monthly Weather Review, vol. 122, no. 6, pp. 1204–1217, 1994. View at Google Scholar · View at Scopus
  2. J. Sun and N. A. Crook, “Comparison of thermodynamic retrieval by the adjoint method with the traditional retrieval method,” Monthly Weather Review, vol. 124, no. 2, pp. 308–324, 1996. View at Google Scholar · View at Scopus
  3. J. Sun and N. A. Crook, “Real-time low-level wind and temperature analysis using single WSR-88D data,” Weather and Forecasting, vol. 16, no. 1, pp. 117–132, 2001. View at Google Scholar · View at Scopus
  4. M. Hu, M. Xue, and K. Brewster, “3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms—part I: cloud analysis and its impact,” Monthly Weather Review, vol. 134, no. 2, pp. 675–698, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Hu, M. Xue, J. Gao, and K. Brewster, “3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms—part II: impact of radial velocity analysis via 3DVAR,” Monthly Weather Review, vol. 134, no. 2, pp. 699–721, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. D. J. Stensrud and J. Gao, “Importance of horizontally inhomogeneous environmental initial conditions to ensemble storm-scale radar data assimilation and very short-range forecasts,” Monthly Weather Review, vol. 138, no. 4, pp. 1250–1272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Ge, J. Gao, and M. Xue, “Diagnostic pressure equation as a weak constraint in a storm-scale three-dimensional variational radar data assimilation system,” Journal of Atmospheric and Oceanic Technology, vol. 29, pp. 1075–1092, 2012. View at Google Scholar
  8. J. Sun and N. A. Crook, “Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint—part I: model development and simulated data experiments,” Journal of the Atmospheric Sciences, vol. 54, no. 12, pp. 1642–1661, 1997. View at Google Scholar · View at Scopus
  9. J. Sun and N. A. Crook, “Dynamical and microphysical retrieval from doppler radar observations using a cloud model and its adjoint—part II: retrieval experiments of an observed Florida convective storm,” Journal of the Atmospheric Sciences, vol. 55, no. 5, pp. 835–852, 1998. View at Google Scholar · View at Scopus
  10. J. Sun, “Initialization and numerical forecasting of a supercell storm observed during STEPS,” Monthly Weather Review, vol. 133, no. 4, pp. 793–813, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Snyder and F. Zhang, “Assimilation of simulated Doppler radar observations with an ensemble Kalman filter,” Monthly Weather Review, vol. 131, no. 8, pp. 1663–1677, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Zhang, C. Snyder, and J. Sun, “Impacts of initial estimate and observations on the convective-scale data assimilation with an ensemble Kalman filter,” Monthly Weather Review, vol. 132, pp. 1238–1253, 2004. View at Google Scholar
  13. A. Caya, J. Sun, and C. Snyder, “A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation,” Monthly Weather Review, vol. 133, no. 11, pp. 3081–3094, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Tong and M. Xue, “Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments,” Monthly Weather Review, vol. 133, no. 7, pp. 1789–1807, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Xue, M. Tong, and K. K. Droegemeier, “An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting,” Journal of Atmospheric and Oceanic Technology, vol. 23, no. 1, pp. 46–66, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Aksoy, D. C. Dowell, and C. Snyder, “A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations—part I: storm-scale analyses,” Monthly Weather Review, vol. 137, no. 6, pp. 1805–1824, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Zhang, Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, “Cloud-resolving hurricane initialization and prediction through assimilation of doppler radar observations with an ensemble Kalman filter,” Monthly Weather Review, vol. 137, no. 7, pp. 2105–2125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Aksoy, D. C. Dowell, and C. Snyder, “A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations—part II: short-range ensemble forecasts,” Monthly Weather Review, vol. 138, no. 4, pp. 1273–1292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. D. C. Dowell, L. J. Wicker, and C. Snyder, “Ensemble kalman filter assimilation of radar observations of the 8 may 2003 oklahoma city supercell: influences of reflectivity observations on storm-scale analyses,” Monthly Weather Review, vol. 139, no. 1, pp. 272–294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Snook, M. Xue, and Y. Jung, “Analysis of a tornadic mesoscale convective vortex based on ensemble kalman filter assimilation of CASA X-band and WSR-88D radar data,” Monthly Weather Review, vol. 139, no. 11, pp. 3446–3468, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. D. T. Dawson, L. J. Wicker, E. R. Mansell, and R. L. Tanamachi, “Impact of the environmental low-level wind profile on ensemble forecasts of the 4 may 2007 Greensburg, Kansas, tornadic storm and associated mesocyclones,” Monthly Weather Review, vol. 140, no. 2, pp. 696–716, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Marquis, Y. Richardson, P. Markowski, D. Dowell, and J. Wurman, “Tornado maintenance investigated with high-resolution dual-doppler and EnKF analysis,” Monthly Weather Review, vol. 140, no. 1, pp. 3–27, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. R. L. Tanamachi, L. J. Wicker, D. C. Dowell, H. B. Bluestein, D. T. Dawson, and M. Xue, “EnKF assimilation of high-resolution, mobile Doppler radar data of the 4 May 2007 Greensburg, Kansas, supercell into a numerical cloud model,” Monthly Weather Review, vol. 141, pp. 625–648, 2012. View at Google Scholar
  24. C. K. Potvin and L. J. Wicker, “Assessing ensemble forecasts of low-level supercell rotation within an OSSE framework,” Weather and Forecasting, 2013. View at Google Scholar
  25. M. Hu and M. Xue, “Analysis and prediction of 8 May 2003 Oklahoma City tornadic thunderstorm and embedded tornado using ARPS with assimilation of WSR-88D radar data,” in Proceedings of the 22nd Conference on Weather Analysis and Forecasting/18th Conference on Numerical Weather Prediction, American Meteorological Society, Salt Lake City, Utah, USA, 2007.
  26. M. Xue, K. K. Droegemeier, and V. Wong, “The Advanced Regional Prediction System (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction model—part I: model dynamics and verification,” Meteorology and Atmospheric Physics, vol. 75, no. 3-4, pp. 161–193, 2000. View at Google Scholar · View at Scopus
  27. M. Xue, K. K. Droegemeier, V. Wong et al., “The Advanced Regional Prediction System (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction tool—part II: model physics and applications,” Meteorology and Atmospheric Physics, vol. 76, no. 3-4, pp. 143–165, 2001. View at Google Scholar · View at Scopus
  28. M. Xue, D. Wang, J. Gao, K. Brewster, and K. K. Droegemeier, “The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation,” Meteorology and Atmospheric Physics, vol. 82, no. 1–4, pp. 139–170, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Xue, “CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2008 Spring Experiment,” in Proceedings of the 24th Conference on Several Local Storms, American Meteorological Society, Savannah, Ga, USA, 2008.
  30. M. Xue, “CAPS realtime storm scale ensemble and high resolution forecasts for the NOAA hazardous weather testbed,” in Proceedings of the 25th Conference on Severe Local Storms, American Meteorological Society, Seattle, Wash, USA, 2011.
  31. T. M. Hamill and C. Snyder, “A hybrid ensemble Kalman filter-3D variational analysis scheme,” Monthly Weather Review, vol. 128, no. 8, pp. 2905–2919, 2000. View at Google Scholar · View at Scopus
  32. A. C. Lorenc, “The potential of the ensemble Kalman filter for NWP—a comparison with 4D-Var,” Quarterly Journal of the Royal Meteorological Society, vol. 129, no. 595, pp. 3183–3203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Buehner, “Ensemble-derived stationary and flow-dependent background-error covariances: evaluation in a quasi-operational NWP setting,” Quarterly Journal of the Royal Meteorological Society, vol. 131, no. 607, pp. 1013–1043, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Wang, D. M. Barker, C. Snyder, and T. M. Hamill, “A hybrid ETKF-3DVAR data assimilation scheme for the WRF model—part II: real observing experiments,” Monthly Weather Review, vol. 136, no. 12, pp. 5132–5147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Wang, D. M. Barker, C. Snyder, and T. M. Hamill, “A hybrid ETKF-3DVAR data assimilation scheme for the WRF model—part I: observation system simulation experiment,” Monthly Weather Review, vol. 136, no. 12, pp. 5116–5131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Gao, M. Xue, A. Shapiro, and K. K. Droegemeier, “A variational method for the analysis of three-dimensional wind fields from two Doppler radars,” Monthly Weather Review, vol. 127, no. 9, pp. 2128–2142, 1999. View at Google Scholar · View at Scopus
  37. J. Gao, M. Xue, A. Shapiro, Q. Xu, and K. K. Droegemeier, “Three-dimensional simple adjoint velocity retrievals from single-Doppler radar,” Journal of Atmospheric and Oceanic Technology, vol. 18, no. 1, pp. 26–38, 2001. View at Google Scholar · View at Scopus
  38. J. Gao, M. Xue, K. Brewster, and K. K. Droegemeier, “A three-dimensional variational data analysis method with recursive filter for Doppler radars,” Journal of Atmospheric and Oceanic Technology, vol. 21, no. 3, pp. 457–469, 2004. View at Google Scholar · View at Scopus
  39. M. Hu and M. Xue, “Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma City tornadic thunderstorm case,” Monthly Weather Review, vol. 135, no. 2, pp. 507–525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Ide, P. Courtier, M. Ghil, and A. C. Lorenc, “Unified notation for data assimilation: operational, sequential and variational,” Journal of the Meteorological Society of Japan, vol. 75, no. 1 B, pp. 181–189, 1997. View at Google Scholar · View at Scopus
  41. R. J. Purser, W.-S. Wu, D. F. Parrish, and N. M. Roberts, “Numerical aspects of the application of recursive filters to variational statistical analysis—part I: spatially homogeneous and isotropic Gaussian covariances,” Monthly Weather Review, vol. 131, pp. 1524–1535, 2003. View at Google Scholar
  42. R. J. Purser, W.-S. Wu, D. F. Parrish, and N. M. Roberts, “Numerical aspects of the application of recursive filters to variational statistical analysis—part II: spatially inhomogeneous and anisotropic general covariances,” Monthly Weather Review, vol. 131, no. 8, pp. 1536–1548, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. S. C. Albers, J. A. McGinley, D. L. Birkenheuer, and J. R. Smart, “The local analysis and prediction system (LAPS): analyses of clouds, precipitation, and temperature,” Weather and Forecasting, vol. 11, no. 3, pp. 273–287, 1996. View at Google Scholar · View at Scopus
  44. J. Zhang, F. Carr, and K. Brewster, “ADAS cloud analysis,” in Proceedings of the Conference on Numerical Weather Prediction, pp. 185–188, American Meteorological Society, Phoenix, Ariz, USA, 1998.
  45. K. Brewster, “Recent advances in the diabatic initialization of a non-hydrostatic numerical model,” in Proceedings of the 15th Conference on Numerical Weather Prediction and 21st Conference on Severe Local Storms, American Meteorological Society, San Antonio, Tex, USA, 2002.
  46. D. McCarthy, L. Ruthi, and J. Hutton, “The greensburg, KS tornado,” in Proceedings of the 22nd Conference on Weather Analysis and Forecasting/18th Conference on Numerical Weather Prediction, American Meteorological Society, Park City, Utah, USA, 2007.
  47. H. B. Bluestein, “The formation and early evolution of the Greensburg, Kansas, tornadic supercell on 4 May 2007,” Weather and Forecasting, vol. 24, no. 4, pp. 899–920, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. Y.-L. Lin, R. D. Farley, and H. D. Orville, “Bulk parameterization of the snow field in a cloud model,” Journal of Climate & Applied Meteorology, vol. 22, no. 6, pp. 1065–1092, 1983. View at Google Scholar · View at Scopus
  49. G. S. Romine, D. W. Burgess, and R. B. Wilhelmson, “A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City Area tornadic supercell,” Monthly Weather Review, vol. 136, no. 8, pp. 2849–2870, 2008. View at Publisher · View at Google Scholar · View at Scopus