Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2013, Article ID 964904, 7 pages
http://dx.doi.org/10.1155/2013/964904
Research Article

Pedestrian Exposure to Air Pollution in Cities: Modeling the Effect of Roadside Trees

CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal

Received 3 May 2013; Revised 28 August 2013; Accepted 2 September 2013

Academic Editor: Panagiotis Nastos

Copyright © 2013 Jorge Humberto Amorim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. UNEP, Concept Paper for Workshop on Partnership for Clean Fuels and Vehicles for East Asia, United Nations Environment Programme, and Regional Resource Center for Asia and Pacific, 2009.
  2. HEI Panel on the Health Effects of Traffic-Related Air Pollution, “Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects,” HEI Special Report 17, Health Effects Institute, Boston, Mass, USA, 2010. View at Google Scholar
  3. A. Seaton, W. MacNee, K. Donaldson, and D. Godden, “Particulate air pollution and acute health effects,” The Lancet, vol. 345, no. 8943, pp. 176–178, 1995. View at Google Scholar · View at Scopus
  4. J. M. Samet, F. Dominici, F. C. Curriero, I. Coursac, and S. L. Zeger, “Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994,” The New England Journal of Medicine, vol. 343, no. 24, pp. 1742–1749, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. WHO, Development of WHO Guidelines for Indoor Air Quality, Report on a Working Group Meeting, World Health Organization Regional Office for Europe, 2007.
  6. C. A. Pope III and D. W. Dockery, “Health effects of fine particulate air pollution: lines that connect,” Journal of the Air and Waste Management Association, vol. 56, no. 6, pp. 709–742, 2006. View at Google Scholar · View at Scopus
  7. M. M. Finkelstein, M. Jerrett, and M. R. Sears, “Traffic air pollution and mortality rate advancement periods,” The American Journal of Epidemiology, vol. 160, no. 2, pp. 173–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Hoek, B. Brunekreef, S. Goldbohm, P. Fischer, and P. A. van den Brandt, “Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study,” The Lancet, vol. 360, no. 9341, pp. 1203–1209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Hoffmann, S. Moebus, S. Möhlenkamp et al., “Residential exposure to traffic is associated with coronary atherosclerosis,” Circulation, vol. 116, no. 5, pp. 489–496, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Tonne, S. Melly, M. Mittleman, B. Coull, R. Goldberg, and J. Schwartz, “A case-control analysis of exposure to traffic and acute myocardial infarction,” Environmental Health Perspectives, vol. 115, no. 1, pp. 53–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Borrego, O. Tchepel, A. M. Costa, H. Martins, J. Ferreira, and A. I. Miranda, “Traffic-related particulate air pollution exposure in urban areas,” Atmospheric Environment, vol. 40, no. 37, pp. 7205–7214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. O. Hertel, F. A. A. M. de Leeuw, O. Raaschou-Nielsen et al., “Human exposure to outdoor air pollution (IUPAC technical report),” Pure and Applied Chemistry, vol. 73, no. 6, pp. 933–958, 2001. View at Google Scholar · View at Scopus
  13. A. Kikuchi, N. Hataya, A. Mochida et al., “Field study of the influences of roadside trees and moving automobiles on turbulent diffusion of air pollutants and thermal environment in urban street canyons,” in Proceedings of the 6th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings (IAQVEC '07), pp. 137–144, Sendai, Japan, October 2007. View at Scopus
  14. C. Gromke and B. Ruck, “On the impact of trees on dispersion processes of traffic emissions in street canyons,” Boundary-Layer Meteorology, vol. 131, no. 1, pp. 19–34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Mochida, Y. Tabata, T. Iwata, and H. Yoshino, “Examining tree canopy models for CFD prediction of wind environment at pedestrian level,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 96, no. 10-11, pp. 1667–1677, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Buccolieri, C. Gromke, S. Di Sabatino, and B. Ruck, “Aerodynamic effects of trees on pollutant concentration in street canyons,” Science of the Total Environment, vol. 407, no. 19, pp. 5247–5256, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Borrego, O. Tchepel, A. M. Costa, J. H. Amorim, and A. I. Miranda, “Emission and dispersion modelling of Lisbon air quality at local scale,” Atmospheric Environment, vol. 37, no. 37, pp. 5197–5205, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. J. H. Amorim, V. Rodrigues, R. Tavares, J. Valente, and C. Borrego, “CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion,” Science of the Total Environment, vol. 461-462, pp. 541–551, 2013. View at Publisher · View at Google Scholar
  19. D. J. Nowak, D. E. Crane, and J. C. Stevens, “Air pollution removal by urban trees and shrubs in the United States,” Urban Forestry and Urban Greening, vol. 4, no. 3-4, pp. 115–123, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. W. R. Ott, “Concepts of human exposure to air pollution,” Environment International, vol. 7, no. 3, pp. 179–196, 1982. View at Google Scholar · View at Scopus
  21. A. I. Miranda, J. H. Amorim, V. Martins et al., “Modelling the exposure of firefighters to smoke based on measured data,” in Proceedings of the 3rd International Conference on Modelling, Monitoring and Management of Forest Fires, 2011.
  22. J. Franke, A. Hellsten, H. Schlünzen, and B. Carissimo, Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment, COST Action 732, Quality Assurance and Improvement of Microscale Meteorological Models, COST Office, 2007.
  23. B. Lalic and D. T. Mihailovic, “An empirical relation describing leaf-area density inside the forest for environmental modelling,” Journal of Applied Meteorology, vol. 43, no. 4, pp. 641–645, 2004. View at Publisher · View at Google Scholar
  24. APA, Air Quality Data for Portuguese Monitoring Stations, APA, Lisbon, Portugal, 2011, http://www.qualar.org/.
  25. J. C. Chang and S. R. Hanna, Technical Descriptions and User' s Guide for the BOOT Statistical Model Evaluation Software Package, version 2.0, 2005.