Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2013, Article ID 969145, 12 pages
http://dx.doi.org/10.1155/2013/969145
Research Article

Research on Land Surface Thermal-Hydrologic Exchange in Southern China under Future Climate and Land Cover Scenarios

1State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2Graduate University of Chinese Academy of Sciences, Beijing 100049, China
3Department of Forest Resource Management, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada V6T 1Z4
4Key Laboratory of Ecosystem Network Observation and Modeling, Synthesis Research Center of Chinese Ecosystem Research Network, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Received 19 June 2013; Revised 29 September 2013; Accepted 17 October 2013

Academic Editor: Xiangzheng Deng

Copyright © 2013 Jianwu Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G.-R. Walther, E. Post, P. Convey et al., “Ecological responses to recent climate change,” Nature, vol. 416, no. 6879, pp. 389–395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. D. D. Zhang, P. Brecke, H. F. Lee, Y.-Q. He, and J. Zhang, “Global climate change, war, and population decline in recent human history,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19214–19219, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. Intergovernmental Panel on Climate Change, “Climate change 2007: the physical science basis,” in Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning et al., Eds., p. 996, Cambridge University Press, Cambridge, UK, 2007. View at Google Scholar
  4. G. A. Meehl, W. M. Washington, W. D. Collins et al., “How much more global warming and sea level rise?” Science, vol. 307, no. 5716, pp. 1769–1772, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Planton, M. Déqué, F. Chauvin, and L. Terray, “Expected impacts of climate change on extreme climate events,” Comptes Rendus Geoscience, vol. 340, no. 9-10, pp. 564–574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. G. A. Ban-Weiss, G. Bala, L. Cao, J. Pongratz, and K. Caldeira, “Climate forcing and response to idealized changes in surface latent and sensible heat,” Environmental Research Letters, vol. 6, no. 3, Article ID 034032, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. A. H. Goldstein, N. E. Hultman, J. M. Fracheboud et al., “Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA),” Agricultural and Forest Meteorology, vol. 101, no. 2-3, pp. 113–129, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. K. B. Wilson, D. D. Baldocchi, M. Aubinet et al., “Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites,” Water Resources Research, vol. 38, no. 12, pp. 1294–1305, 2002. View at Google Scholar · View at Scopus
  9. L. Gu, T. Meyers, S. G. Pallardy et al., “Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site,” Journal of Geophysical Research D, vol. 111, no. D16, Article ID D16102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Krishnan, T. P. Meyers, R. L. Scott, L. Kennedy, and M. Heuer, “Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America,” Agricultural and Forest Meteorology, vol. 153, pp. 31–44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Hotaek, Y. Takeshi, and O. Takeshi, “Responses of Energy Budget and Evapotranspiration to Climate Change in Eastern Siberia, Evapotranspiration,” Prof. Leszek Labedzki (Ed.), InTech, 2011, http://www.intechopen.com/books/evapotranspiration/responses-of-energy-budget-and-evapotranspiration-to-climate-change-in-eastern-siberia.
  12. P. Campra, M. Garcia, Y. Canton, and A. Palacios-Orueta, “Surface temperature cooling trends and negative radiative forcing due to land use change toward greenhouse farming in southeastern Spain,” Journal of Geophysical Research D, vol. 113, no. D18, Article ID D18109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Georgescu, D. B. Lobell, and C. B. Field, “Direct climate effects of perennial bioenergy crops in the United States,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 11, pp. 4307–4312, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. J. Feddema, K. W. Oleson, G. B. Bonan et al., “Atmospheric science: the importance of land-cover change in simulating future climates,” Science, vol. 310, no. 5754, pp. 1674–1678, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. T. M. Saitoh, I. Tamagawa, H. Muraoka, and H. Kondo, “An analysis of summer evapotranspiration based on multi-year observations including extreme climatic conditions over a cool temperate evergreen coniferous forest Takayama, Japan,” Hydrological Processes, vol. 27, no. 23, pp. 3341–3349, 2013. View at Google Scholar
  16. R. A. Pielke Sr., G. Marland, R. A. Betts et al., “The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases,” Philosophical Transactions of the Royal Society A, vol. 360, no. 1797, pp. 1705–1719, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Timbal and J. M. Arblaster, “Land cover change as an additional forcing to explain the rainfall decline in the south west of Australia,” Geophysical Research Letters, vol. 33, no. 7, Article ID L07717, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. F. W. S. Correia, R. C. S. Alvalá, and A. O. Manzi, “Modeling the impacts of land cover change in Amazonia: a regional climate model (RCM) simulation study,” Theoretical and Applied Climatology, vol. 93, no. 3-4, pp. 225–244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Li, M. Pan, Z. Cong, L. Zhang, and E. Wood, “Vegetation control on water and energy balance within the Budyko framework,” Water Resource Research, vol. 49, no. 2, pp. 969–976, 2013. View at Google Scholar
  20. B. Chen, J. M. Chen, and W. Ju, “Remote sensing-based ecosystem-atmosphere simulation scheme (EASS)-Model formulation and test with multiple-year data,” Ecological Modelling, vol. 209, no. 2–4, pp. 277–300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. D. D. Baldocchi and D. R. Bowling, “Modelling the discrimination of 13CO2 above and within a temperate broad-leaved forest canopy on hourly to seasonal time scales,” Plant, Cell and Environment, vol. 26, no. 2, pp. 231–244, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Jia, W. Zhu, A. Lu, and T. Yan, “A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China,” Remote Sensing of Environment, vol. 115, no. 12, pp. 3069–3079, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Aksoy, Z. F. Toprak, A. Aytek, and N. E. Ünal, “Stochastic generation of hourly mean wind speed data,” Renewable Energy, vol. 29, no. 14, pp. 2111–2131, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. T. X. Yue, Z. M. Fan, and J. Y. Liu, “Scenarios of land cover in China,” Global and Planetary Change, vol. 55, no. 4, pp. 317–342, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. L. Xu and R. Jones, “Validating PRECIS with ECMWF reanalysis data over China,” Chinese Journal of Agrometeorology, vol. 25, no. 1, pp. 5–9, 2004. View at Google Scholar
  26. F. D. Wang, Y. L. Xu, and T. Li, “Long term climate numerical simulation over china by regional climate model PRECIS,” Chinese Journal of Agrometeorology, vol. 31, no. 3, pp. 327–332, 2010. View at Google Scholar
  27. S. W. Gou, Y. X. Zhang, and Y. L. Xu, “Analysis of climate resource changes during maize growth period in Ningxia under SRES A1B scenario,” Chinese Journal of Eco-Agriculture, vol. 20, no. 10, pp. 1394–1403, 2012. View at Google Scholar
  28. X. Z. Shi, D. S. Yu, E. D. Warner et al., “Soil database of 1:1, 000, 000 digital soil survey and reference system of the chinese genetic soil classification system,” Soil Survey Horizons, vol. 45, pp. 129–136, 2004. View at Google Scholar
  29. V. Mishra, K. A. Cherkauer, D. Niyogi et al., “A regional scale assessment of land use/land cover and climatic changes on water and energy cycle in the upper Midwest United States,” International Journal of Climatology, vol. 30, no. 13, pp. 2025–2044, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. T. E. Twine, C. J. Kucharik, and J. A. Foley, “Effects of land cover change on the energy and water balance of the Mississippi River basin,” Journal of Hydrometeorology, vol. 5, pp. 640–655, 2004. View at Google Scholar