Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2014 (2014), Article ID 143246, 9 pages
http://dx.doi.org/10.1155/2014/143246
Research Article

Spatial and Temporal Variability of Precipitation in Haihe River Basin, China: Characterization and Management Implications

1Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographical Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
2Department of Land, Air, and Water Resources, University of California, Davis, CA 95816, USA
3State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Received 21 May 2014; Accepted 20 June 2014; Published 14 July 2014

Academic Editor: Eduardo García-Ortega

Copyright © 2014 Yuzhou Luo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Xia, H. Feng, C. Zhan, and G. Niu, “Determination of a reasonable percentage for ecological water-use in the Haihe River Basin, China,” Pedosphere, vol. 16, no. 1, pp. 33–42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. J. L. Domagalski, X. Zhou, C. Lin et al., Comparative Water-Quality Assessment of the Hai He River Basin in the People's Republic of China and Three Similar Basins in the United States, U.S. Geological Survey Professional Paper 1647, U.S. Department of the Interior, U.S. Geological Survey, Reston, Va, USA, 2010.
  3. Z. Wang, Y. Luo, C. Liu, J. Xia, and M. Zhang, “Spatial and temporal variations of precipitation in Haihe River Basin, China: six decades of measurements,” Hydrological Processes, vol. 25, no. 18, pp. 2916–2923, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Ding, G. Ren, G. Shi et al., “China's national assessment report on climate change (I): climate change in China and the future trend,” Advances in Climate Change Research, vol. 3, pp. 1–5, 2007. View at Google Scholar
  5. F. Guo and G. Liu, “Preliminary analysis of the utilization of storms in Haihe River Basin,” Haihe Water Resources, vol. 2004, pp. 8–11, 2004 (Chinese). View at Google Scholar
  6. S. Zeng, L. Zhang, and J. Xia, “Impacts of climate change on the hydrological cycle in the Haihe basin,” in Proceedings of the International Symposium on Water Resource and Environmental Protection (ISWREP '11), pp. 1107–1110, Xi'an, China, May 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. T. Chu, J. Xia, C.-Y. Xu, and V. P. Singh, “Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China,” Theoretical and Applied Climatology, vol. 99, no. 1-2, pp. 149–161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. Q. Li and Y. Ding, “Climate simulation and future projection of precipitation and the water vapor budget in the Haihe River basin,” Acta Meteorologica Sinica, vol. 26, no. 3, pp. 345–361, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Piao, P. Ciais, Y. Huang et al., “The impacts of climate change on water resources and agriculture in China,” Nature, vol. 467, no. 7311, pp. 43–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. Zhang, Z. Xu, Z. Shen, S. Li, and S. Wang, “The Han River watershed management initiative for the South-to-North Water Transfer Project (Middle Route) of China,” Environmental Monitoring and Assessment, vol. 148, no. 1–4, pp. 369–377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Liu, C. Liu, Y. Luo, M. Zhang, and J. Xia, “Dramatic decrease in streamflow from the headwater source in the central route of China's water diversion project: climatic variation or human influence?” Journal of Geophysical Research D, vol. 117, no. 6, Article ID D06113, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Liu, C. Liu, Y. Luo, and M. Zhang, “Increasing probability of a simultaneous dry year between the water source and destination of the central route of China's water diversion project,” Geophysical Research Letters, 2013. View at Google Scholar
  13. R. Mei and G. Wang, “Impact of sea surface temperature and soil moisture on summer precipitation in the united states based on observational data,” Journal of Hydrometeorology, vol. 12, no. 5, pp. 1086–1099, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Capotondi and M. A. Alexander, “Relationship between precipitation in the great plains of the United States and global SSTs: insights from the IPCC AR4 models,” Journal of Climate, vol. 23, no. 11, pp. 2941–2958, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J.-Y. Yu and Y. Zou, “The enhanced drying effect of Central-Pacific El Niño on US winter,” Environmental Research Letters, vol. 8, Article ID 014019, 2013. View at Google Scholar
  16. C. M. Mills and J. E. Walsh, “Seasonal variation and spatial patterns of the atmospheric component of the pacific decadal oscillation,” Journal of Climate, vol. 26, no. 5, pp. 1575–1594, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Li, W. Li, and A. P. Barros, “Atmospheric moisture budget and its regulation of the summer precipitation variability over the Southeastern United States,” Climate Dynamics, vol. 41, no. 3-4, pp. 613–631, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. R. W. Higgins and V. E. Kousky, “Changes in observed daily precipitation over the United States between 1950–79 and 1980–2009,” Journal of Hydrometeorology, vol. 14, no. 1, pp. 105–121, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Wu, S. Yang, Z. Wen, G. Huang, and K. Hu, “Interdecadal change in the relationship of southern China summer rainfall with tropical Indo-Pacific SST,” Theoretical and Applied Climatology, vol. 108, no. 1-2, pp. 119–133, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Cheng, U. Lohmann, J. Zhang, Y. Luo, Z. Liu, and G. Lesins, “Contribution of changes in sea surface temperature and aerosol loading to the decreasing precipitation trend in southern China,” Journal of Climate, vol. 18, no. 9, pp. 1381–1390, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Zhou, C. Tam, W. Zhou, and J. C. L. Chan, “Influence of South China Sea SST and the ENSO on winter rainfall over South China,” Advances in Atmospheric Sciences, vol. 27, no. 4, pp. 832–844, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. E. A. B. Eltahir, “A soil moisture-rainfall feedback mechanism: 1. Theory and observations,” Water Resources Research, vol. 34, no. 4, pp. 765–776, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. K. L. Findell and E. A. B. Eltahir, “Atmospheric controls on soil moisture-boundary layer interactions—part I: framework development,” Journal of Hydrometeorology, vol. 4, pp. 552–569, 2003. View at Google Scholar
  24. K. L. Findell and E. A. B. Eltahir, “Atmospheric controls on soil moisture–boundary layer interactions. Part II: feedbacks within the continental United States,” Journal of Hydrometeorology, vol. 4, pp. 570–583, 2003. View at Publisher · View at Google Scholar
  25. R. L. Edmonds, “Geography and natural resources,” in Beijing and Tianjin, towards a Millennial Megalopolis, B. Hook, Ed., vol. 4, pp. 56–103, Oxford University Press, Oxford, UK, 1998. View at Google Scholar
  26. CMA Surface Meteorologic Data of China, China Meteorologic Data Sharing Service System, China Meteorological Administration, Beijing, China, http://cdc.cma.gov.cn.
  27. N. A. Rayner, D. E. Parker, E. B. Horton et al., “Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century,” Journal of Geophysical Research D: Atmospheres, vol. 108, no. 14, Article ID ACL2-1-22, 2003. View at Google Scholar · View at Scopus
  28. C. Li and J. Pan, “Atmospheric circulation characteristics associated with the onset of Asian summer monsoon,” Advances in Atmospheric Sciences, vol. 23, no. 6, pp. 925–939, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. K. E. Trenberth, “The Definition of El Niño,” Bulletin of the American Meteorological Society, vol. 78, no. 12, pp. 2771–2777, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. ESA Global ECV soil moisture data, The European Space Agency (ESA)'s climate change initiative (CCI), 2013, http://www.esa-soilmoisture-cci.org/.
  31. H. van den Dool, J. Huang, and Y. Fan, “Performance and analysis of the constructed analogue method applied to U.S. soil moisture over 1981–2001,” Journal of Geophysical Research D: Atmospheres, vol. 108, no. 16, pp. 1–16, 2003. View at Google Scholar · View at Scopus
  32. Y. Fan and H. van den Dool, “Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present,” Journal of Geophysical Research D: Atmospheres, vol. 109, no. D10, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. Z. Wang, Y. Luo, X. Zhu, R. Wang, W. Li, and M. Zhang, “Watershed modeling of surface water-groundwater interaction under projected climate change and water management in the Haihe River basin, China,” British Journal of Environment and Climate Change, vol. 3, no. 3, pp. 421–443, 2013, A Special Issue in Honor of Distinguished Professor Miguel A. Mariño: Modeling Approaches to Study Climate Change Impacts on Water and Environmental Systems. View at Publisher · View at Google Scholar
  34. H. B. Mann, “Nonparametric tests against trend,” Econometrica, vol. 13, pp. 245–259, 1945. View at Publisher · View at Google Scholar · View at MathSciNet
  35. M. G. Kendall, Rank Correlation Measures, Charles Griffin, London, UK, 1975.
  36. D. G. Clayton, “A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence,” Biometrika, vol. 65, no. 1, pp. 141–151, 1978. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  37. H. Zheng, L. Zhang, R. Zhu, C. Liu, Y. Sato, and Y. Fukushima, “Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin,” Water Resources Research, vol. 45, no. 7, Article ID W00A19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Yue and C. Y. Wang, “Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test,” Water Resources Research, vol. 38, no. 6, pp. 41–47, 2002. View at Google Scholar · View at Scopus
  39. G. Wang, J. Xia, and J. Che, “Quantification of effects of climate variations and human activities on runoff by a monthly water balance model: a case study of the Chaobai River basin in northern China,” Water Resources Research, vol. 45, no. 7, Article ID W00A11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Wang and M. Hejazi, “Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States,” Water Resources Research, vol. 47, no. 9, Article ID W00J12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Partal and E. Kahya, “Trend analysis in Turkish precipitation data,” Hydrological Processes, vol. 20, no. 9, pp. 2011–2026, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. M. M. Samdi and A. Zghoul, “A sudden change in rainfall characteristics in Amman, Jordan during the mid,” The American Journal of Environmental Sciences, vol. 2, pp. 84–91, 2006. View at Google Scholar
  43. K. Hoshi and S. J. Burges, “Sampling properties of parameter estimates for the log Pearson type 3 distribution, using moments in real space,” Journal of Hydrology, vol. 53, no. 3-4, pp. 305–316, 1981. View at Publisher · View at Google Scholar · View at Scopus
  44. R. B. Nelsen, An Introduction to Copulas, Springer Series in Statistics, Springer, New York, NY, USA, 2006.
  45. J.-Y. Yu, Y. Zou, S. T. Kim, and T. Lee, “The changing impact of El Niño on US winter temperatures,” Geophysical Research Letters, vol. 39, no. 15, Article ID L15702, 2012. View at Publisher · View at Google Scholar
  46. Q. Xiong, X. He, and L. Kang, “Synchronous asynchronous encounter probability of rich poor precipitation between water source area and water receiving area based on copula theory in middle route of south to north water transfer project,” Water Resources and Power, vol. 27, pp. 9–11, 2009. View at Google Scholar