Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2014 (2014), Article ID 203545, 15 pages
http://dx.doi.org/10.1155/2014/203545
Research Article

Feature Selection for Very Short-Term Heavy Rainfall Prediction Using Evolutionary Computation

1Department of Computer Science and Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 139-701, Republic of Korea
2Forecast Research Laboratory, National Institute of Meteorological Research, Korea Meteorological Administration, 45 Gisangcheong-gil, Dongjak-gu, Seoul 156-720, Republic of Korea

Received 16 August 2013; Revised 23 October 2013; Accepted 1 November 2013; Published 6 January 2014

Academic Editor: Sven-Erik Gryning

Copyright © 2014 Jae-Hyun Seo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Bushey, “The Changma,” http://www.theweatherprediction.com/weatherpapers/007.
  2. G. E. Afandi, M. Mostafa, and F. E. Hussieny, “Heavy rainfall simulation over sinai peninsula using the weather research and forecasting model,” International Journal of Atmospheric Sciences, vol. 2013, Article ID 241050, 11 pages, 2013. View at Publisher · View at Google Scholar
  3. J. H. Seo and Y. H. Kim, “A survey on rainfall forecast algorithms based on machine learning technique,” in Proceedings of the KIIS Fall Conference, vol. 21, no. 2, pp. 218–221, 2011, (Korean).
  4. Korea Meteorological Administration, http://www.kma.go.kr.
  5. M. N. French, W. F. Krajewski, and R. R. Cuykendall, “Rainfall forecasting in space and time using a neural network,” Journal of Hydrology, vol. 137, no. 1–4, pp. 1–31, 1992. View at Google Scholar · View at Scopus
  6. E. Toth, A. Brath, and A. Montanari, “Comparison of short-term rainfall prediction models for real-time flood forecasting,” Journal of Hydrology, vol. 239, no. 1–4, pp. 132–147, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. S. J. Burian, S. R. Durrans, S. J. Nix, and R. E. Pitt, “Training artificial neural networks to perform rainfall disaggregation,” Journal of Hydrologic Engineering, vol. 6, no. 1, pp. 43–51, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M. C. Valverde Ramírez, H. F. de Campos Velho, and N. J. Ferreira, “Artificial neural network technique for rainfall forecasting applied to the São Paulo region,” Journal of Hydrology, vol. 301, no. 1–4, pp. 146–162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Q. Hung, M. S. Babel, S. Weesakul, and N. K. Tripathi, “An artificial neural network model for rainfall forecasting in Bangkok, Thailand,” Hydrology and Earth System Sciences, vol. 13, no. 8, pp. 1413–1425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. V. M. Krasnopolsky and Y. Lin, “A neural network nonlinear multimodel ensemble to improve precipitation forecasts over continental US,” Advances in Meteorology, vol. 2012, Article ID 649450, 11 pages, 2012. View at Publisher · View at Google Scholar
  11. L. Ingsrisawang, S. Ingsriswang, S. Somchit, P. Aungsuratana, and W. Khantiyanan, “Machine learning techniques for short-term rain forecasting system in the northeastern part of Thailand,” in Proceedings of the World Academy of Science, Engineering and Technology, vol. 31, pp. 248–253, 2008.
  12. W.-C. Hong, “Rainfall forecasting by technological machine learning models,” Applied Mathematics and Computation, vol. 200, no. 1, pp. 41–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. C. M. Kishtawal, S. Basu, F. Patadia, and P. K. Thapliyal, “Forecasting summer rainfall over India using genetic algorithm,” Geophysical Research Letters, vol. 30, no. 23, pp. 1–9, 2003. View at Google Scholar · View at Scopus
  14. J. N. K. Liu, B. N. L. Li, and T. S. Dillon, “An improved Naïve Bayesian classifier technique coupled with a novel input solution method,” IEEE Transactions on Systems, Man and Cybernetics C, vol. 31, no. 2, pp. 249–256, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Nandargi and S. S. Mulye, “Relationships between rainy days, mean daily intensity, and seasonal rainfall over the koyna catchment during 1961–2005,” The Scientific World Journal, vol. 2012, Article ID 894313, 10 pages, 2012. View at Publisher · View at Google Scholar
  16. A. Routray, K. K. Osuri, and M. A. Kulkarni, “A comparative study on performance of analysis nudging and 3DVAR in simulation of a heavy rainfall event using WRF modeling system,” ISRN Meteorology, vol. 2012, no. 21, Article ID 523942, 2012. View at Publisher · View at Google Scholar
  17. Y. K. Kouadio, J. Servain, L. A. T. Machado, and C. A. D. Lentini, “Heavy rainfall episodes in the eastern northeast Brazil linked to large-scale ocean-atmosphere conditions in the tropical Atlantic,” Advances in Meteorology, vol. 2012, Article ID 369567, 16 pages, 2012. View at Publisher · View at Google Scholar
  18. Z. Wang and C. Huang, “Self-organized criticality of rainfall in central China,” Advances in Meteorology, vol. 2012, Article ID 203682, 8 pages, 2012. View at Publisher · View at Google Scholar
  19. T. Hou, F. Kong, X. Chen, and H. Lei, “Impact of 3DVAR data assimilation on the prediction of heavy rainfall over southern China,” Advances in Meteorology, vol. 2013, Article ID 129642, 17 pages, 2013. View at Publisher · View at Google Scholar
  20. H. D. Lee, S. W. Lee, J. K. Kim, and J. H. Lee, “Feature selection for heavy rain prediction using genetic algorithms,” in Proceedings of the Joint 6th International Conference on Soft Computing and Intelligent Systems and 13th International Symposium on Advanced Intelligent Systems (SCIS-ISIS '12), pp. 830–833, 2012. View at Publisher · View at Google Scholar
  21. J. H. Seo and Y. H. Kim, “Genetic feature selection for very short-term heavy rainfall prediction,” in Proceedings of the International Conference on Convergence and Hybrid Information Technology, vol. 7425 of Lecture Notes in Computer Science, pp. 312–322, 2012.
  22. N. V. Chawla, “Data mining for imbalanced datasets: an overview,” Data Mining and Knowledge Discovery Handbook, vol. 5, pp. 853–867, 2006. View at Google Scholar
  23. Y.-S. Choi and B.-R. Moon, “Feature selection in genetic fuzzy discretization for the pattern classification problems,” IEICE Transactions on Information and Systems, vol. 90, no. 7, pp. 1047–1054, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. K. A. de Jong, An analysis of the behavior of a class of genetic adaptive systems [Ph.D. thesis], University of Michigan, Ann Arbor, Mich, USA, 1975.
  25. R. N. Khushaba, A. Al-Ani, and A. Al-Jumaily, “Differential evolution based feature subset selection,” in Proceedings of the 19th International Conference on Pattern Recognition (ICPR '08), pp. 1–4, December 2008. View at Scopus
  26. R. N. Khushaba, A. Al-Ani, and A. Al-Jumaily, “Feature subset selection using differential evolution and a statistical repair mechanism,” Expert Systems with Applications, vol. 38, no. 9, pp. 11515–11526, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, article 27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. Automatic Weather Stations, http://www.automaticweatherstation.com.
  29. R. Chang, Z. Pei, and C. Zhang, “A modified editing k-nearest neighbor rule,” Journal of Computers, vol. 6, no. 7, pp. 1493–1500, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. T. R. Golub, D. K. Slonim, P. Tamayo et al., “Molecular classification of cancer: class discovery and class prediction by gene expression monitoring,” Science, vol. 286, no. 5439, pp. 531–527, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. H. Kim, S. Y. Lee, and B. R. Moon, “A genetic approach for gene selection on microarray expression data,” in Genetic and Evolutionary Computation—GECCO 2004, K. Deb, Ed., vol. 3102 of Lecture Notes in Computer Science, pp. 346–355, 2004. View at Publisher · View at Google Scholar
  32. Y. Yin, D. Han, and Z. Cai, “Explore data classification algorithm based on SVM and PSO for education decision,” Journal of Convergence Information Technology, vol. 6, no. 10, pp. 122–128, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. Wikipedia, http://en.wikipedia.org.
  34. E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello, “A comparative study of differential evolution variants for global optimization,” in Proceedings of the 8th Annual Genetic and Evolutionary Computation Conference, pp. 485–492, July 2006. View at Scopus