Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2014 (2014), Article ID 238945, 9 pages
http://dx.doi.org/10.1155/2014/238945
Research Article

Evaluating the Marginal Land Resources Suitable for Developing Bioenergy in Asia

1State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2University of Chinese Academy of Sciences, Beijing 100049, China

Received 23 October 2013; Revised 11 December 2013; Accepted 10 January 2014; Published 13 March 2014

Academic Editor: Shengli Huang

Copyright © 2014 Jingying Fu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. BP Statistical Review of World Energy, 2012.
  2. A. Karp and I. Shield, “Bioenergy from plants and the sustainable yield challenge,” New Phytologist, vol. 179, no. 1, pp. 15–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Tang, J.-S. Xie, and S. Geng, “Marginal land-based biomass energy production in China,” Journal of Integrative Plant Biology, vol. 52, no. 1, pp. 112–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Zhuang, R. W. Gentry, G.-R. Yu, G. S. Sayler, and J. W. Bickham, “Bioenergy sustainability in China: potential and impacts,” Environmental management, vol. 46, no. 4, pp. 525–530, 2010. View at Google Scholar · View at Scopus
  5. J. Hill, E. Nelson, D. Tilman, S. Polasky, and D. Tiffany, “Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 30, pp. 11206–11210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. P. R. Adler, S. J. del Grosso, and W. J. Parton, “Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems,” Ecological Applications, vol. 17, no. 3, pp. 675–691, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. L. Stephenson, J. S. Dennis, and S. A. Scott, “Improving the sustainability of the production of biodiesel from oilseed rape in the UK,” Process Safety and Environmental Protection, vol. 86, no. 6, pp. 427–440, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. REN21 Renewables 2012 Global Status Report. Renewable Energy Policy Network for the 21st Century, 2012.
  9. ExxonMobil, The Outlook for Energy: A View to 2040, 2013.
  10. M. M. Mochizuki, A. Tellis, and M. Wills, Confronting Terrorism in the Pursuit of Power: Strategic Asia, 2004-2005, 2004.
  11. S. Kumar, P. Abdul Salam, P. Shrestha, and E. K. Ackom, “An assessment of Thailand's biofuel development,” Sustainability, vol. 5, no. 4, pp. 1577–1597, 2013. View at Publisher · View at Google Scholar
  12. A. Thomas, A. Bond, and K. Hiscock, “A GIS based assessment of bioenergy potential in England within existing energy systems,” Biomass & Bioenergy, vol. 55, pp. 107–121, 2013. View at Publisher · View at Google Scholar
  13. I. Gelfand, R. Sahajpal, X. Zhang, R. C. Izaurralde, K. L. Gross, and G. P. Robertson, “Sustainable bioenergy production from marginal lands in the US Midwest,” Nature, vol. 493, no. 7433, pp. 514–517, 2013. View at Publisher · View at Google Scholar
  14. S. Liang, M. Xu, and T. Z. Zhang, “Life cycle assessment of biodiesel production in China,” Bioresource Technology, vol. 129, pp. 72–77, 2013. View at Publisher · View at Google Scholar
  15. Y. P. Wu, S. G. Liu, and Z. P. Li, “Identifying potential areas for biofuel production and evaluating the environmental effects: a case study of the James River Basin in the Midwestern United States,” Global Change Biology Bioenergy, vol. 4, no. 6, pp. 875–888, 2012. View at Publisher · View at Google Scholar
  16. A. L. Borrion, M. C. McManus, and G. P. Hammond, “Environmental life cycle assessment of lignocellulosic conversion to ethanol: a review,” Renewable & Sustainable Energy Reviews, vol. 16, no. 7, pp. 4638–4650, 2012. View at Publisher · View at Google Scholar
  17. P. Schröder, R. Herzig, B. Bojinov et al., “Bioenergy to save the world: producing novel energy plants for growth on abandoned land,” Environmental Science and Pollution Research, vol. 15, no. 3, pp. 196–204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Batidzirai, E. M. W. Smeets, and A. P. C. Faaij, “Harmonising bioenergy resource potentials-methodological lessons from review of state of the art bioenergy potential assessments,” Renewable & Sustainable Energy Reviews, vol. 16, no. 9, pp. 6598–6630, 2012. View at Publisher · View at Google Scholar
  19. T. Hattori and S. Morita, “Energy crops for sustainable bioethanol production; which, where and how?” Plant Production Science, vol. 13, no. 3, pp. 221–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. Q. Zhang, J. Ma, G. Qiu et al., “Potential energy production from algae on marginal land in China,” Bioresource Technology, vol. 109, pp. 252–260, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Qiu, J. Huang, M. Keyzer et al., “Biofuel development, food security and the use of marginal land in china,” Journal of Environmental Quality, vol. 40, no. 4, pp. 1058–1067, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Zhuang, D. Jiang, L. Liu, and Y. Huang, “Assessment of bioenergy potential on marginal land in China,” Renewable & Sustainable Energy Reviews, vol. 15, no. 2, pp. 1050–1056, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. Y.-K. Tseng, “The economical and environmental advantages of growing Jatropha curcas on marginal land,” Advanced Materials Research, vol. 361–363, pp. 1495–1498, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. Z.-C. Li and X.-M. Liang, “Analysis of the potential of cassava used as raw materials for fuel alcohol production in China,” Liquor-Making Science & Technology, vol. 4, pp. 31–33, 2010. View at Google Scholar
  25. C. Jansson, A. Westerbergh, J. Zhang, X. Hu, and C. Sun, “Cassava, a potential biofuel crop in China,” Applied Energy, vol. 86, no. 1, pp. S95–S99, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Sorapipatana and S. Yoosin, “Life cycle cost of ethanol production from cassava in Thailand,” Renewable & Sustainable Energy Reviews, vol. 15, no. 2, pp. 1343–1349, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Sriroth, K. Piyachomkwan, S. Wanlapatit, and S. Nivitchanyong, “The promise of a technology revolution in cassava bioethanol: from Thai practice to the world practice,” Fuel, vol. 89, no. 7, pp. 1333–1338, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Kumar, J. Singh, S. M. Nanoti, and M. O. Garg, “A comprehensive Life Cycle Assessment (LCA) of Jatropha biodiesel production in India,” Bioresource Technology, vol. 110, pp. 723–729, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. Y.-K. Tseng, “The economical and environmental advantages of growing Jatropha curcas on marginal land,” Advanced Materials Research, vol. 361-363, pp. 1495–1498, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, and R. S. Norhasyima, “Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: a review,” Renewable & Sustainable Energy Reviews, vol. 15, no. 8, pp. 3501–3515, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Openshaw, “A review of Jatropha curcas: an oil plant of unfulfilled promise,” Biomass and Bioenergy, vol. 19, no. 1, pp. 1–15, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Axelsson, M. Franzén, M. Ostwald, G. Berndes, G. Lakshmi, and N. H. Ravindranath, “Jatropha cultivation in southern India: assessing farmers' experiences,” Biofuels, Bioproducts and Biorefining, vol. 6, no. 3, pp. 246–256, 2012. View at Publisher · View at Google Scholar
  33. D. Zhuang, D. Jiang, L. Liu, and Y. Huang, “Assessment of bioenergy potential on marginal land in China,” Renewable & Sustainable Energy Reviews, vol. 15, no. 2, pp. 1050–1056, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Tang, P. Zhang, L. Zhang, M. Li, and L. Wu, “A potential bioenergy tree: Pistacia chinensis Bunge,” in Proceedings of the International Conference on Future Energy, Environment, and Materials B, G. Yang, Ed., pp. 737–746, 2012. View at Publisher · View at Google Scholar
  35. B. Antizar-Ladislao and J. L. Turrion-Gomez, “Second-generation biofuels and local bioenergy systems,” Biofuels, Bioproducts and Biorefining, vol. 2, no. 5, pp. 455–469, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. A. K. Chandel, E. C. Chan, R. Rudravaram, M. L. Narasu, L. V. Rao, and P. Ravinda, “Economics and environmental impact of bioethanol production technologies: an appraisal,” Biotechnology and Molecular Biology Review, vol. 2, no. 1, pp. 14–32, 2007. View at Google Scholar
  37. H. Shao and L. Chu, “Resource evaluation of typical energy plants and possible functional zone planning in China,” Biomass and Bioenergy, vol. 32, no. 4, pp. 283–288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Zhang, W. Han, X. Jing, G. Pu, and C. Wang, “Life cycle economic analysis of fuel ethanol derived from cassava in southwest China,” Renewable & Sustainable Energy Reviews, vol. 7, no. 4, pp. 353–366, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Nuwamanya, L. Chiwona-Karltun, R. S. Kawuki, and Y. Baguma, “Bio-ethanol production from non-food parts of cassava (Manihot esculenta Crantz),” Ambio, vol. 41, no. 3, pp. 262–270, 2012. View at Publisher · View at Google Scholar
  40. T. Silalertruksa and S. H. Gheewala, “Security of feedstocks supply for future bio-ethanol production in Thailand,” Energy Policy, vol. 38, no. 11, pp. 7476–7486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Sarin, M. Sharma, S. Sinharay, and R. K. Malhotra, “Jatropha-palm biodiesel blends: an optimum mix for Asia,” Fuel, vol. 86, no. 10-11, pp. 1365–1371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Jain and M. P. Sharma, “Prospects of biodiesel from Jatropha in India: a review,” Renewable & Sustainable Energy Reviews, vol. 14, no. 2, pp. 763–771, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Abdulla, E. S. Chan, and P. Ravindra, “Biodiesel production from Jatropha curcas: a critical review,” Critical Reviews in Biotechnology, vol. 31, no. 1, pp. 53–64, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. C.-Y. Yang, Z. Fang, B. Li, and Y.-F. Long, “Review and prospects of Jatropha biodiesel industry in China,” Renewable & Sustainable Energy Reviews, vol. 16, no. 4, pp. 2178–2190, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. M. A. Kalam, J. U. Ahamed, and H. H. Masjuki, “Land availability of Jatropha production in Malaysia,” Renewable & Sustainable Energy Reviews, vol. 16, no. 6, pp. 3999–4007, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. M. H. Chakrabarti, M. Ali, J. N. Usmani et al., “Status of biodiesel research and development in Pakistan,” Renewable & Sustainable Energy Reviews, vol. 16, no. 7, pp. 4396–4405, 2012. View at Publisher · View at Google Scholar
  47. L. Lu, D. Jiang, D. Zhuang, and Y. Huang, “Evaluating the marginal land resources suitable for developing pistacia chinensis-based biodiesel in China,” Energies, vol. 5, no. 7, pp. 2165–2177, 2012. View at Publisher · View at Google Scholar
  48. S. Bontemps, P. Defourny, E. van Bogaert et al., GlobCover 2009, vol. 53, European Spatial Agency-Université Catholique de Louvain, 2011.
  49. A. Jarvis, H. I. Reuter, A. Nelson, and E. Guevara, “Hole-filled SRTM for the globe version 4,” The CGIAR-CSI SRTM 90m Database, 2008, http://www.cgiar-csi.org.
  50. R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, “Very high resolution interpolated climate surfaces for global land areas,” International Journal of Climatology, vol. 25, no. 15, pp. 1965–1978, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. FAO/IIASA/ISRIC/ISS-CAS/JRC Harmonized World Soil Database (Version 1.1), 2009.
  52. X. Hou, H. Zuo, and H. Mou, “Geographical distribution of energy plant Pistacia chinensis Bunge in China,” Ecology and Environmental Sciences, vol. 19, pp. 1160–1164, 2010. View at Google Scholar
  53. Y. Fu, X. Pan, and H. Gao, “Geographical distribution and climate characteristics of habitat of Pistacia chinensis Bunge in China,” Chinese Journal of Agrometeorology, vol. 30, no. 3, pp. 318–322, 2009. View at Google Scholar
  54. J. Heller, Physic Nut, Jatropha curcas L., vol. 1, Bioversity International, 1996.
  55. R. K. Henning, “Jatropha curcas L,” Plant Resources of the Tropical Africa, vol. 14, pp. 116–122, 2004. View at Google Scholar
  56. K. Eckart and P. Henshaw, “Jatropha curcas L. and multifunctional platforms for the development of rural sub-Saharan Africa,” Energy for Sustainable Development, vol. 16, no. 3, pp. 303–311, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Yang, L. Chen, Z. Yan, and H. Wang, “Emergy analysis of cassava-based fuel ethanol in China,” Biomass and Bioenergy, vol. 35, no. 1, pp. 581–589, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Foidl, G. Foidl, M. Sanchez, M. Mittelbach, and S. Hackel, “Jatropha curcas L. as a source for the production of biofuel in Nicaragua,” Bioresource Technology, vol. 58, no. 1, pp. 77–82, 1996. View at Publisher · View at Google Scholar · View at Scopus
  59. V. C. Pandey, K. Singh, J. S. Singh, A. Kumar, B. Singh, and R. P. Singh, “Jatropha curcas: a potential biofuel plant for sustainable environmental development,” Renewable & Sustainable Energy Reviews, vol. 16, no. 5, pp. 2870–2883, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Kumar, A. Chaube, and S. K. Jain, “Sustainability issues for promotion of Jatropha biodiesel in Indian scenario: a review,” Renewable & Sustainable Energy Reviews, vol. 16, no. 2, pp. 1089–1098, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Kumar Biswas, S. Pohit, and R. Kumar, “Biodiesel from jatropha: can India meet the 20% blending target?” Energy Policy, vol. 38, no. 3, pp. 1477–1484, 2010. View at Publisher · View at Google Scholar · View at Scopus